CARACTERIZACIÓN PRELIMINAR DE LOS MANGLARES de la Isla de PRÍNCIPE
(São Tomé y Príncipe)

2017

Fotografía cortesía de Rui Camilo
El presente informe ilustra los resultados obtenidos en la primera fase del proyecto: CARACTERIZACIÓN PRELIMINAR DE LOS MANGLARES de la Isla de PRÍNCIPE (Santo Tomé e Príncipe), que se integra en el "Programa y Conservación e Investigación sobre Hábitats Poco Conocidos" en el marco del Plan de Acción de la Reserva Mundial de la Biosfera de la UNESCO de la Isla de Príncipe, promovido por la Unidad de Gestión de la Reserva de la Biosfera de Príncipe en colaboración con la Universidad de Las Palmas de Gran Canaria (España) a través de IU-ECOAQUA.

Este proyecto contó con el apoyo financiero, logístico y de recursos humanos de diversas entidades, en particular la Fundação Príncipe Trust, el Gobierno Regional de Príncipe, la Universidad de Las Palmas de Gran Canaria y la COPA - Cooperación para el Medio Ambiente y el Desarrollo Sostenible.

La Coordinación Científica del Proyecto estuvo a cargo de António Domingos Abreu (coordinador científico de la Reserva de la Biosfera de la UNESCO de la Isla de Príncipe) y de Ricardo Haroun (Universidad de Las Palmas de Gran Canaria).

El equipo técnico que ha desarrollado el proyecto se compone de las siguientes personas:

Dr. António Domingos Abreu, biólogo
Dr. Ricardo Haroun Tabraue, biólogo
Dr. Aketza Herrero, oceanógrafo
D. Yodiney Santos, técnico auxiliar

El proyecto también ha contado con la colaboración de otras personas que intervinieron en diferentes campos como apoyo técnico, en particular:

Dª. María do Céu Madureira, bióloga
Dª. Ico Martínez, oceanógrafa
Dª. Estrela Matilde, bióloga
Dr. Fernando Tuya, oceanógrafo

Dª. María do Ceu Madureira (Centro de Ecología funcional de la Universidad de Coimbra) ha sido la encargada de identificar las diferentes familias y especies de hierbas que tapizan los sustratos que componen los manglares.

Dª. Ico Martínez (IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria) ha colaborado en la redacción y maquetación del presente informe.
Dña. Estrela Matilde (Fundação Príncipe Trust) ha sido la responsable de la logística para llevar a cabo el proyecto.

El Dr. Fernando Tuya (IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria) ha colaborado en el estudio y la evolución espacio-temporal de los parámetros físico-químicos de la columna de agua de los manglares.

El presente informe deberá citarse del modo siguiente:

Índice de contenidos

1. INTRODUCCIÓN ...8
 1.1. Contexto ..8
 1.2. Objetivos ...12
2. METODOLOGÍA ...15
 2.1. Campaña ..15
 2.2. Caracterización de la biodiversidad terrestre ...15
 2.2.1. Vegetación ...15
 2.2.2. Aves ..17
 2.3. Caracterización de la biodiversidad acuática ...18
 2.3.1. Características físico-químicas ..20
 2.3.2. Macrofauna bentónica ..22
 2.3.3. Especies ícticas ...23
3. ESTUDIO DE LOS MANGLARES ...24
 3.1. Manglar de Praia Salgada ...24
 3.1.1. Vegetación ...25
 3.1.2. Aves ..30
 3.1.3. Características físico-químicas ..32
 3.1.4. Macrofauna bentónica ..34
 3.1.5 Ictiofauna ...36
 3.2. Manglar de Praia Grande ...37
 3.2.1. Vegetación ...37
 3.2.2. Aves ..42
 3.2.3. Características físico-químicas ..44
 3.2.4. Macrofauna bentónica ..46
 3.2.5 Ictiofauna ...47
 3.3. Manglar de Praia Caxão ...48
 3.3.1. Vegetación ...48
 3.3.2. Aves ..53
 3.3.3. Características físico-químicas ..54
 3.3.4. Macrofauna bentónica ..56
 3.3.5 Ictiofauna ...57
4. PRESIONES ANTROPOGÉNICAS ..59
5. CONCLUSIONES ...61
6. BIBLIOGRAFÍA ...67
Figuras

Fig. 1: Ubicación de São Tomé e Príncipe .. 8
Fig. 2: Árboles de mangle rojo de la especie Rizophora harrisonii .. 10
Fig. 3: Ubicación de los manglares de la isla de Príncipe y fotografía característica de manglar. 12
Fig. 4: Bioindicadores ambientales: papagayos y pez pulmonado. 14
Fig. 5: Diversidad de aves; Chó-chó (Halcyon malimbica dryas), Garza blanca (Bubulcus ibis), Conóbia (Alcedo cristata thomensis). ... 18
Fig. 6: Población de Tympanotonos fuscatus. .. 20
Fig. 7: Sonda multiparamétrica y sensores .. 21
Fig. 8: Dos especies de crustáceos de los manglares: Cardisoma armatum y ejemplar hembras de Afruca tangeri. .. 22
Fig. 9: Peces Tose-tose (Aplodictyum spilauchen) y corcovado (Caranx sp.), capturados en los manglares. .. 23
Fig. 10: Vista panorámica de Praia Salgada y la Bahía de Praia Abade 24
Fig. 11: Vista aérea del manglar de Praia Salgada y puntos de muestreo (cortesía de Felipe Spena, FPT) ... 25
Fig. 12: Distribución de hábitats del manglar de Praia Salgada .. 27
Fig. 13: Distribución de las principales especies arbóreas del manglar de Praia Salgada 28
Fig. 14: Panorámica de la cuenca de transición y ribera de Achrostichum aureum (Praia Salgada) ... 29
Fig. 15: Toma de datos de aves y papatellos pequeños (Actitis hypoleucos) 30
Fig. 16: Diversidad de aves en Praia Salgada; Merlo (Ploceus princeps), Peito branco (Zosterops leucophaeus) y Falcão (Milvus migrans). .. 32
Fig. 17: Representaciones gráficas de parámetros físico-químicos de Praia Salgada 33
Fig. 18: Bivalvos encontrados en Praia Salgada; Tagelus adansoni y Senilia senilis. 34
Fig. 19: Ejemplares capturados de Liza grandisquamis y Arnoglossus imperialis 36
Fig. 20: Vista aérea del manglar de Praia Grande y puntos de muestreo 37
Fig. 21: Distribución de hábitats del manglar de Praia Grande .. 39
Fig. 22: Distribución de las principales especies arbóreas del manglar de Praia Grande. . 41
Fig. 23: Pandanus candelabrus y Pentaclethra macrophilia .. 41
Fig. 24: Representaciones gráficas de parámetros físico-químicos de Praia Grande 44
Fig. 25: Toma de datos y muestras ... 47
Fig. 26: Vista aérea del manglar de Praia Caixão y puntos de muestreo 48
Fig. 27: Distribución de hábitats del manglar de Praia Caixão .. 50
Fig. 28: Distribución de las principales especies arbóreas del manglar de Praia Caixão ... 51
Fig. 29: Uága-uága (Setaria megaphylla), Café d’Obô (Bertoria racemosa) y Salaconta (Canna indica). ... 52
Fig. 30: Diversidad de aves: Papatela pequeno (Actitis hypoleucus), Papatela grande (Numenius phaeopus) y Tchonzu (Butorides striatus) en Praia Caixão. .. 54
Fig. 31: Representaciones gráficas de parámetros físico-químicos de Praia Caixão 55
Fig. 32: Vista panorámica desde Praia Caixão .. 57
Fig. 33: Reciclaje de botellas de plástico ... 59
Fig. 34: Panorámica de Praia Caixão en marea alta ... 61
Fig. 35: Biodiversidad habitual de los manglares de Príncipe; murciélagos frugívoros (Myonycteris brachycephala) y ostras (Ostrea sp.). .. 63
Fig. 36: Hongos y diversos ejemplares de helechos epífitos .. 65
Tablas

Tabla 1: Listado de los principales ecosistemas que componen los manglares de Príncipe. 16
Tabla 2: Listado de las principales variables ambientales para la caracterización de manglares de Príncipe. .. 17
Tabla 3: Tipos de ecosistemas identificados en Praia Salgada, el área que ocupan (Ha) y el porcentaje de área de estudio que representan. ... 26
Tabla 4: Listado de especies arbóreas censadas en Praia Salgada. ... 28
Tabla 5: Listado de las principales especies herbáceas del manglar de Praia Salgada. 29
Tabla 6: Listado de especies de aves observadas en Praia Salgada. .. 31
Tabla 7: Listado de organismos de macrofauna bentónica censados en Praia Salgada. 35
Tabla 8: Listado de especies de peces censados en Praia Salgada. ... 36
Tabla 9: Tipos de ecosistemas identificados en Praia Grande, el área que ocupan (Ha) y el porcentaje de área de estudio que representan. ... 38
Tabla 10: Listado de especies arbóreas censadas en Praia Grande.. 40
Tabla 11: Listado de las principales especies herbáceas del manglar de Praia Grande. 42
Tabla 12: Listado de especies de aves observadas en Praia Grande. .. 43
Tabla 13: Listado de organismos de macrofauna bentónica censados en Praia Grande. 46
Tabla 14: Listado de especies de peces censados en Praia Salgada. ... 47
Tabla 15: Tipos de ecosistemas identificados en Praia Caxão, el área que ocupan (Ha) y el porcentaje de área de estudio que representan. ... 49
Tabla 16: Listado de especies arbóreas censadas en Praia Caxão. ... 51
Tabla 17: Listado de las principales especies herbáceas del manglar de Praia Caxão. 52
Tabla 18: Listado de especies de aves observadas en Praia Caxão. ... 53
Tabla 19: Listado de organismos de macrofauna bentónica censados en Praia Caxão. 56
Tabla 20: Listado de especies de peces censados en Praia Caxão. .. 57
1. INTRODUCCIÓN

1.1. Contexto

La República Democrática de São Tomé e Príncipe, uno de los países más jóvenes y pequeños de África, está conformado por un pequeño archipiélago de dos islas y varios islotes, siendo las dos islas más importantes las que dan nombre al país. Las islas forman parte de una cadena montañosa de volcanes extintos que incluyen también las islas de Annobón al sudoeste y de Bioko al noreste, que pertenecen a Guinea Ecuatorial, y el Monte Camerún en la costa oeste de África. Se ubica en el Golfo de Guinea (Atlántico ecuatorial) a unos 440 km al sur y 220 km al oeste, respectivamente, de la costas de Nigeria y Gabón, muy cerca de la línea ecuatorial.

![Ubicación de São Tomé e Príncipe.](image)

La isla de São Tomé tiene un tamaño de 50 km de largo y 32 km de ancho y es la más montañosa de las islas. Su máxima altura es de 2.024 metros, y en ella vive la mayor parte de la población del país, mayoritariamente en la capital del país, la ciudad de São Tomé. La isla de Príncipe tiene un tamaño de 19,3 km de largo y 10,6 km de ancho, y es la segunda en tamaño, con 136 km² de superficie. Sus habitantes residen en la zona norte de la isla, ya que la mitad sur de la isla conforma el Parque Natural.

También existen varios islotes deshabitados de menor tamaño, que forman parte del país: Islote de las Rolas, Islote de las Cabras, Islote Bombón, Islote Carozo, Tiñosa Grande y Tiñosa Pequeña.

Las islas forman parte de una cadena montañosa de volcanes extintos que incluyen también las islas de Annobón al suroeste y de Bioko al noreste, que pertenecen a Guinea Ecuatorial, y el Monte Camerún en la costa oeste de África.
Sin embargo, lo que realmente distingue a este humilde país es, en primer lugar, su historia, y en segundo, el de ser uno de los países más desconocidos a nivel mundial, que sin embargo alberga multitud de animales y plantas en grave peligro de extinción en una de las pocas reservas mundiales de bosques tropicales. Declara como Reserva Mundial de la Biosfera por la UNESCO el 2 de diciembre de 2012, las angostas elevaciones montañosas denominadas “picos”, la intensa luminosidad, los ríos que atraviesan sus suelos y las numerosas cascadas, subrayan la belleza de estas tierras de carácter eminentemente tropical, y que ecológicamente forma parte de la ecorregión denominada Selva de Tierras Bajas de São Tomé, Príncipe y Annobón. Actualmente cuentan con dos áreas protegidas: el Parque Natural do Obô en São Tomé y el Parque Natural do Obô en Príncipe, ambos creados en 2006.

El presente estudio es una primera aproximación al conocimiento de los manglares de la isla de Príncipe, delimitando y caracterizando este singular ecosistema forestal de transición entre el medio marino y el terrestre, que alberga multitud de especies (tanto marinas como terrestres) en sus primeros estados, así como otras especies especializadas en este exigente ambiente que no se pueden encontrar en ningún otro ecosistema.

Los manglares son ecosistemas terrestres y acuáticos, característicos de climas tropicales que constituyen bosques con elevada complejidad estructural y alta biomasa de madera, cuya característica común es tolerar condiciones extremas de salinidad y bajas concentraciones de oxígeno en aguas y suelo, para lo cual han evolucionado hacia adaptaciones morfológicas, fisiológicas y reproductivas especiales, que les permiten colonizar sustratos salinos (especies halófitas), inundados e inestables. Los manglares se caracterizan por una alta producción primaria y desempeñan papeles vitales en la transferencia de nutrientes (especialmente el carbono de la tierra al mar) y sirven como fuentes o sumideros en el ciclo global de dichas sustancias (Lacerda y Novelli, 1992). Se encuentran prácticamente en todos los países de la costa occidental del continente africano, desde Mauritania en el norte hasta Angola en el sur (Spalding et al., 1997). Es la vegetación dominante de más del 70% de las costas tropicales y subtropicales de todo el mundo. Se estima que los ecosistemas de manglares cubren 150.000 km² en todo el mundo, de los cuales África tiene unos 35.000 km² (Diop, 1992, 1993).

Se desarrolla en zonas intermareales, zona comprendida entre pleamar y bajamar, preferentemente en costas protegidas o moderadamente expuestas, tales como golfo y ensenadas, marismas y estuarios o desembocaduras de ríos. Generalmente presentan fondos blandos de arenas, limos o arcillas (nunca rocosos) que reciben periódicamente agua dulce por escorrentía, ya que la relación entre precipitación y evaporación juega un papel importante en el mantenimiento de los procesos ecológicos.
Por su condición de ecotono entre los dos grandes tipos de biomas, los manglares alojan gran cantidad de organismos terrestres y marinos. Las raíces aéreas de los manglares estabilizan parcialmente este ambiente y proporcionan un sustrato en el que viven muchas especies de plantas y animales. Por encima del agua, los manglares y el estrato arbóreo son un hábitat importante para una amplia variedad de especies. Estos incluyen aves, insectos, mamíferos y reptiles. Debajo del agua, las raíces de manglar están cubiertas por epibiontes como tunicados, esponjas, algas y bivalvos. El sustrato blando en los manglares forma hábitat para varias especies infaunales y epifaunales, mientras que el espacio entre las raíces proporciona refugio y alimento para la fauna móvil como gambas, cangrejos y peces. El desecho orgánico de los manglares se transforma en detritus, que sustenta principalmente el manglar. El plancton, las algas epífitas y el microfitobentos también constituyen una base importante para la red alimentaria del manglar (Nagelkerken et al., 2008). Debido a la alta abundancia de alimento y refugio, y la baja presión de la depredación, los manglares forman un hábitat ideal para una variedad de especies animales, durante parte o la totalidad de sus ciclos de vida.

Fig. 2: Árboles de mangle rojo de la especie Rizophora harrisoni.

Por tanto, los manglares poseen una productividad primaria muy alta, lo que mantiene una compleja red trófica de organismos acuáticos, anfibios y terrestres como: zonas de alimentación y anidamiento de aves, crecimiento y protección de reptiles, hábitat de estados juveniles de muchos peces pelágicos y litorales (carángidos, clupeídos, serránidos, rosquileos, corvinas, lisas, etc), moluscos, crustáceos, equinodermos y anélidos, cuyos hábitats en estado adulto son las praderas de fanerógamas, las marismas y lagunas costeras, los arrecifes coralinos u otros, incluso de aguas dulces en
el interior de zonas continentales (Norudin, 1987; Rönnbäck et al., 1999; Flores-Verdugo, 2000; Nagelkerken et al., 2008). Aproximadamente el 70% de los organismos capturados en el mar, realizan parte de su ciclo de vida en una zona de manglar o laguna costera. También son hábitat temporal de muchas especies de aves migratorias septentrionales y meridionales.

Los manglares también son importantes de cara al cambio climático, ya que son fijadores de CO$_2$, y al inmovilizar grandes cantidades de sedimentos ricos en materia orgánica, atrapan contaminantes como: metales pesados y compuestos orgánicos tóxicos persistentes. Se estima que por cada individuo de manglar destruido, se pierden anualmente 767 kg de especies marinas de importancia comercial (Turner, 1991).

Por otro lado, desempeñan una función primordial en la protección de las costas contra la erosión eólica y marina: el dosel denso y alto del bosque de manglar es una barrera efectiva contra la erosión eólica, y sus raíces inmovilizan y estabilizan grandes cantidades de sedimentos de manera que actúan frente a la erosión producida por el hidrodinamismo marino, protegiendo los litorales de los fenómenos climáticos adversos como tsunamis o huracanes.

Las diferentes especies de manglares tienen distintos patrones de distribución espacial en función de la tolerancia a los siguientes parámetros:

- salinidad: especies halófitas, pueden tolerar concentraciones variables de salinidad; desde 0 ups hasta 70 ups (mar=35 ups)
- bajas concentraciones de oxígeno
- estabilidad del sustrato
- frecuencia de inundación (hidroperiodo)
- relación precipitación-evaporación
- características del relieve

Se ha determinado que la colonización la inicia el mangle rojo (*Rhizophora harrisonii*) y otras especies de *Rhizophora*. Una especie con raíces arqueadas, que en los trópicos húmedos supera los 40 m de altura, tolerando salinidad desde 0 hasta 45 ups, y requiere de tiempos de inundación mayores y aguas con mayor circulación, arraigan bien en suelos muy blandos e inestables, los cuales afianza y estabiliza al crecer; este proceso de fijación permite la colonización de otras especies, como el mangle negro (*Avicennia germinans*), una de las especies más tolerantes a la salinidad: en suelos hipersalinos (70 ups) puede modificar su estructura fisonómica, formando arbustos o matorrales; posee pneumatóforos que le permiten realizar intercambio gaseoso; igualmente afianza los suelos.
El mangle blanco (Laguncularia harrisonii) puede encontrarse distribuido entre los dos anteriores; tolera salinidades de 0 a 45 ups, tolera con frecuencia periodos de inundación menor al mangle rojo y mayor al mangle negro, además de necesitar un sustrato (suelo) aún más estable. En algunos sitios puede estar presente el mangle botoncillo (Conocarpus erectus), una especie que está más en contacto con la vegetación terrestre. Puesto que las diferentes especies de mangle transforman sus sustratos y crean así hábitat para otras especies, la “sucesión” da origen a una secuencia de especies desde el frente marino hasta la tierra firme.

1.2. Objetivos

Aunque los manglares son reconocidos internacionalmente por su importancia para el bienestar de las poblaciones humanas, en la isla de Príncipe no existe información sobre la estructura o dinámica de estos ecosistemas. Este estudio ha tenido como objetivo general contribuir al conocimiento de los manglares que actualmente existen en la isla de Príncipe, tanto desde el punto de vista estructural como de su distribución espacial. Estos tres manglares se encuentran en: Praia Salgada (1°37'57.1"N 7°27'14.1"E), Praia Grande (1°40'01.5"N 7°26'43.1"E) y Praia Caixão (1°37'08.3"N 7°22'09.6"E).

Fig. 3: Ubicación de los manglares de la isla de Príncipe y fotografía característica de manglar.
Para ello, se han llevado a cabo 3 acciones principales con las que poder ahondar en el conocimiento de los mismos y examinar el estado, tanto ecológico como de preservación, en el que se encuentran, para poder llevar a cabo las pertinentes acciones de conservación y desarrollo sostenible:

1. **Delimitación, cartografía e inventario de las especies vegetales principales de los manglares:** se ha llevado a cabo el estudio exhaustivo de la vegetación principal (árboles y plantas que tapizan el suelo) en cada manglar y zonas adyacentes, tanto a pie como en kayak, para determinarla y caracterizarla, mediante censos visuales directos y puntos de muestreo en las lagunas hasta las cabeceras de los ríos que alimentan a ésta, y que es donde normalmente se encuentran los manglares. De esta manera podemos caracterizar, tanto la biodiversidad terrestre como acuática, y poder determinar qué zonas del manglar han sido alteradas mediante la acción del hombre (uso del suelo con fines agrícolas), y por tanto cuales pueden ser las zonas potencialmente recuperables y preservables.

2. **Estudio físico-químico del agua en zonas de manglar:** se ha procedido al estudio de los parámetros físico-químicos de las aguas que nutren los manglares: mediante el uso de una sonda multiparamétrica, desde la desembocadura al mar hasta la cabecera de los ríos, para observar la variación de parámetros como: estratificación y mezcla de agua salada (mar) y dulce (aporte fluvial), salinidad, temperatura, materia orgánica disuelta y oxígeno disuelto, entre otros, hasta un total de 12 medidas. Todos estos parámetros caracterizan las masas de agua que se encuentran en los manglares, determinando la calidad del agua y ayudando a conocer los requerimientos necesarios para poder realizar futuras acciones de protección y/o repoblación de los manglares, con el fin de mantener las masas de agua saneadas y con una calidad ecológica y ambiental acorde.

3. **Identificación faunística de especies asociadas al manglar y hábitats costeros:** se ha realizado la identificación de macroorganismos que habitan el manglar (especies permanentes y estacionales o temporales) de tres grupos principalmente: aves, peces e invertebrados marinos (crustáceos decápodos y moluscos), como indicadores de calidad medioambiental, que aportan un valor añadido al manglar dada su importancia ecológica, económica y turística.

Mediante el muestreo metódico de avistamiento de aves en varios puntos del manglar, podemos determinar el número de especies que interactúan en el manglar en el tiempo, determinando qué especies habitan permanentemente y qué especies migratorias hacen uso de este hábitat de manera periódica. Una gran cantidad de especies e individuos de aves es un buen indicador o descriptor de la buena salud ecológica y medioambiental de la que gozan los manglares.
El estudio de la fauna íctica (tanto peces de agua dulce como de agua salada) mediante la observación directa y captura con artes de pesca, confirma la importancia del papel ecológico que los manglares desempeñan, albergando gran cantidad de especies marinas en algunas de sus etapas vitales, sobre todo en los primeros estados de crecimiento, de especies de interés pesquero como: corcovado, lenguado, corvina, tainha, etc.

También destaca como especie característica residente de los manglares y por tanto de la buena salud de la que gozan (bioindicador ambiental), los peces pulmonados (peces saltarines del barro), que a su vez pueden jugar un papel importante como reclamo turístico junto con las aves.

El tercer grupo a estudio es el de los crustáceos decápodos y moluscos que se encuentran en los manglares y zonas adyacentes. Son pocas las especies de crustáceos que se encuentran pero no por ello menos importantes, ya que el papel trófico que desempeñan es crucial para para el buen estado de los manglares, limpiando de restos vegetales y animales el ecosistema.

Respecto a los moluscos destacan, entre otras, las clases *Gastropoda* (caracoles) y *Bivalvia* (almejas, ostras) principalmente, que mediante la filtración del agua consiguen reducir las concentraciones de elementos polucionantes de origen antropogénico, y por tanto la proliferación de microalgas tóxicas.

Gracias a estas tres líneas de investigación, vamos a poder conocer y caracterizar las comunidades situadas a lo largo de estos manglares, identificar los factores de amenaza, y posteriormente crear una lista de recomendaciones técnicas para el desarrollo del plan de uso y gestión sostenible de los hábitats de manglar.
2. EQUIPO Y METODOLOGÍA

2.1. Inicio y trabajo de campo

Después de la identificación y reconocimiento preliminar de las 3 áreas donde se ubican los manglares en la Isla del Príncipe, se preparó un plan de trabajo y metodologías de campo para realizar los levantamientos de caracterización en los que se incluyó una campaña de muestreo de las zonas de caracterización de estos ecosistemas, durante el periodo comprendido entre el 2 de septiembre y 17 de diciembre de 2016.

En función del tamaño y de la complejidad, cada zona húmeda fue dividida en una cantidad mínima de puntos de muestreo necesarios para la caracterización de cada manglar, de manera que se pueda obtener una visión global y de conjunto de todos y cada uno de los hábitats que conforman el bioma.

Los datos recogidos se procesaron desde el momento de su obtención y se concluyó la elaboración del presente informe en julio de 2017.

2.2. Caracterización de la biodiversidad terrestre

El estudio preliminar se ha llevado a cabo en el segundo semestre de 2016. Con el fin de caracterizar y delimitar los tres manglares de la isla de Príncipe, inicialmente se llevó a cabo una primera visita en julio de 2016, con el fin de conocer y confirmar los manglares existentes. Posteriormente, entre los meses de septiembre a diciembre se ha llevado a cabo el estudio sobre el terreno, a pie y mediante kayak, para un primer reconocimiento de las zonas vegetales y partes fluviales que conforman los diversos hábitats de los manglares.

2.2.1. Vegetación

Una vez delimitadas las zonas, mediante el uso de GPS se concretaron los puntos de muestreo al azar, y mediante censos visuales directos (hasta 50 m desde el borde del agua), se cuentan, censan y catalogan las plantas y árboles que conforman los diferentes ecosistemas que componen el bioma vegetal del manglar. Para ello se procede al estudio y caracterización de las zonas circundantes de la zona de transición mar/rio hasta una distancia máxima de 50 m tierra adentro, teniendo en cuenta, tanto el ecosistema de manglar, como los ecosistemas asociados a éste que finalmente caracterizan el bioma de manglar objeto de este estudio. Se catalogan las especies arbóreas, tanto árboles como arbustos, y hierbas que tapizan el sustrato. Para las especies de árboles se cuentan todos los individuos con un contorno a la altura del pecho (CAP) mayor de 40 cm, y este dato después se procesa para calcular el diámetro a la altura del pecho (DAP).
Con el fin de tener una visión de conjunto de todo el ecosistema del manglar y zonas adyacentes del manglar, en el de Praia Salgada se utilizó un dron DJI Phantom 3 con cámara GoPro, que durante varios vuelos guiados por GPS obtuvo cientos de fotografías. Mediante el software Pix4Dmapper Pro, se procedió al montaje de todas estas fotografías, en una sola ortofotografía, de manera que se puede obtener una fotografía de alta resolución que se puede ampliar considerablemente para el estudio de las diferentes especies arbóreas. Para Praia Grande y Praia Caixão, (las ortofotografías aún están en proceso) se han utilizado fotos aéreas disponibles en Google Earth, y mediante el programa ImageJ y el software MIDI se ha procedido a cotejar las diferentes áreas que se han calculado, corroborando los datos de superficies y áreas obtenidos a pie mediante GPS.

<table>
<thead>
<tr>
<th>Ecosistemas</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manglar</td>
<td>Zona inundada o inundable por agua salada con cobertura arbórea de manglar (Rhizophora harrisonii).</td>
</tr>
<tr>
<td>Pantano herbáceo</td>
<td>Zona inundada o inundable con ausencia de especies arbóreas, con predominio de estrato herbáceo o arbustivo y posibles zonas de sedimentos expuestos.</td>
</tr>
<tr>
<td>Coqueral de inundación</td>
<td>Zonas de río rodeadas e inundadas con estrato arbóreo dominado por coqueros (Cocos nucifera).</td>
</tr>
<tr>
<td>Palmeral de inundación</td>
<td>Zonas de río rodeadas e inundadas con estrato arbóreo dominado por palmeras (Elaeis guineensis).</td>
</tr>
<tr>
<td>Floresta de inundación</td>
<td>Zonas de río rodeadas e inundadas donde el estrato arbóreo es diversificado, compuesto por diferentes especies y ninguna predominante.</td>
</tr>
<tr>
<td>Coqueral</td>
<td>Zona no inundada con estrato arbóreo dominado por coqueros (Cocos nucifera).</td>
</tr>
<tr>
<td>Palmeral</td>
<td>Zona no inundada con estrato arbóreo dominado por palmeras (Elaeis guineensis).</td>
</tr>
<tr>
<td>Campos</td>
<td>Zona no inundada de árboles pequeños donde se mantiene la horticultura</td>
</tr>
<tr>
<td>Floresta secundaria</td>
<td>Zona no inundada de árboles frutales sin uso agrícola, como regeneración resultante de la eliminación de la vegetación original por la actividad humana.</td>
</tr>
<tr>
<td>Matos</td>
<td>Zona no inundada con predominio de arbustos y árboles bajos.</td>
</tr>
<tr>
<td>Playa</td>
<td>Zona costera con suelo arenoso y poca cobertura vegetal.</td>
</tr>
<tr>
<td>Agua</td>
<td>Zona cubierta por agua.</td>
</tr>
</tbody>
</table>

Tabla 1: Listado de los principales ecosistemas que componen los manglares de Príncipe.

La inspección visual y taxonómica de las áreas que componen el bioma de manglares de la isla de Príncipe, dan como resultado preliminar varios ecosistemas característicos, atendiendo a las especies o hábitats principales que lo componen. De esta manera, se observa que dichos manglares están representados o compuestos por los ecosistemas arriba descritos (Tabla 1).
Las variables ambientales utilizadas para caracterizar estos ecosistemas, vienen dadas por los datos obtenidos en los puntos de muestreo (Tabla 2), que poseen un radio de 20 m, y en el que se estudian y miden los siguientes parámetros que describen las zonas:

<table>
<thead>
<tr>
<th>Variable ambiental</th>
<th>Descripción (radio de 20 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hábitat</td>
<td>Categoría del ecosistema: manglar, campo, floresta secundaria, palmar, coqueral, etc.</td>
</tr>
<tr>
<td>Declive</td>
<td>Inclinación del terreno: 0 (plano), 1 (ligeramente inclinado), 2 (inclinado)</td>
</tr>
<tr>
<td>Subcobertura</td>
<td>Densidad de vegetación al nivel del observador: 0 (ausencia) hasta 5 (muy denso)</td>
</tr>
<tr>
<td>Cobertura</td>
<td>Porcentaje de área cubierta por las copas de los árboles</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>Uso silvícola, agrícola o forestal</td>
</tr>
<tr>
<td>Árboles>40</td>
<td>Nº árboles con contorno mayor de 40 cm (a la altura del pecho, CAP)</td>
</tr>
<tr>
<td>Spp>40</td>
<td>Nº de especies de árboles >40 cm</td>
</tr>
<tr>
<td>Volumen arbóreo</td>
<td>Volumen de árboles>40 cm, calculado por ecuación alométrica II.2 (Chave et al. 2005)</td>
</tr>
</tbody>
</table>

Tabla 2: Listado de las principales variables ambientales para la caracterización de manglares de Príncipe.

2.2.2. Aves

La isla de Príncipe posee varias áreas para la conservación de aves: dos áreas importantes para la conservación de las aves (Important Bird Area, IBA) y un área de aves endémicas (Endemic Bird Area, EBA) dentro del programa BirdLife International para la identificación, documentación y conservación de lugares críticos para las aves del mundo.

Siguiendo el protocolo estándar para el estudio de la avifauna, cada manglar ha sido muestreado una vez a la semana durante cuatro meses, de septiembre a diciembre de 2016. En cada punto de muestreo se han hecho 4 contajes de 10 minutos a diferentes horas del día, registrando el número de individuos y censando las especies (Ralph et al., 1995). Posteriormente se hace la media de los cuatro contajes para normalizar los datos y evitar las variaciones que se puedan dar por causa de la hora.

Debido a su orografía y disposición espacial, los manglares de Praia Salgada y de Praia Grande cuentan con 4 puntos diferentes de avistamiento que abarcan la totalidad del manglar. En el caso del manglar de Praia Caixão, con tres puntos de avistamiento de aves fue suficiente para cubrir la totalidad de la superficie a estudio.
2.3. Caracterización de la biodiversidad acuática

Generalmente las masas de agua costera tienen una importancia ecológica y comercial, ya que es donde se produce el desarrollo y la sustentabilidad de las poblaciones. Si bien los manglares de la isla de Príncipe no son zonas directamente explotadas por las comunidades locales, sí ejecutan un papel importante, de manera más o menos directa, en la obtención de materias de recursos primarios como alimentación, carbón y material vegetal para la construcción de enseres del hogar.

Dependiendo de las características hidrodinámicas, los manglares pueden presentar diversos comportamientos. Varios son los factores a tener en cuenta en el comportamiento dinámico de estos: por un lado tienen el aporte fluvial (que es muy diferente en cuanto a caudal en épocas secas y en épocas de lluvia), y por otro lado, la zona de contacto con el medio marino, ya que la influencia de las mareas permitirán un mayor o menor aporte de agua salada en la zona de influencia, y por tanto puede variar la cantidad o tasa de renovación del agua. Por supuesto, la orografía, a menudo alterada por la acción del ser humano, juega un papel importante en las tasas de renovación de los cuerpos de agua (tanto salado como dulce) por lo que influye directamente en el comportamiento de cada manglar.

En función de la estabilidad del flujo de los aportes fluviales o costeros, los parámetros físico-químicos se pueden ver severamente alterados, creando cuerpos de agua más homogéneos o dando lugar a una acentuada estratificación de los cuerpos de agua que después pueden dar lugar a zonas muy eutrofizadas, ayudando a la proliferación de biomasas fitoplanctónicas que pueden alterar, tanto el equilibrio trófico, como los parámetros físico-químicos del agua (alteraciones en: temperatura, turbidez, nitratos,
sulfatos, pH, concentraciones de O$_2$ disuelto, etc.) y por tanto la salud ecológica del bioma. El fitoplancton se compone de las microalgas que viven en la columna de agua. Este grupo de organismos están generalmente en la base de las cadenas alimentarias acuáticas existentes en estos sistemas, por lo que la ausencia o presencia en exceso de estos organismos puede acarrear consecuencias fatales para el equilibrio del bioma.

Por tanto, es muy importante el estudio general de las zonas de manglares, con el fin de poder conocer todos los aportes potenciales y tratar de evitar zonas con alta eutrofización que alteren de manera significativa el equilibrio ecosistémico, no permitiendo procesos naturales como la degradación de materia vegetal, y en consecuencia los alevines de especies marinas no encuentren refugio debido a la mala calidad ambiental de los parámetros químicos. En zonas costeras con limitaciones geomorfológicas, es importante evaluar el grado de eutrofización, ya que un alto grado de enriquecimiento de nutrientes puede desencadenar un Bloom de organismos productores primarios que pueden dar lugar a la disminución de oxígeno por el proceso de degradación de materia orgánica, y esta ausencia de oxígeno puede causar la muerte por asfixia de los diferentes organismos acuáticos que habitan estas zonas húmedas.

En conclusión, es vital la evaluación de la calidad ambiental, el nivel de eutrofización y el control de la comunidad fitoplanctónica.

Tanto el aporte fluvial como las corrientes de marea, moldean el contorno geomorfológico de los manglares, creando zonas de depósito de residuos y materia orgánica, que sirven de alimento para diversas especies de invertebrados bentónicos como: larvas de insectos, lombrices, crustáceos y poliquetos (Robertson et al., 1991; Shafroth et al., 2000), y que generalmente son buenos bioindicadores del estado ecológico del sistema, ya que la ausencia o presencia de diferentes especies oportunistas o tolerantes al stress, indican el actual estado ecológico en el que se encuentran. Generalmente, estas cadenas tróficas primarias y secundarias sirven de alimento a la ictiofauna eurihalina que habita estas zonas húmedas: la mayor parte de las especies corresponden a especies marinas en sus primeros estados de madurez (alevin y algunos juveniles) que encuentran, entre las raíces de las especies arbóreas, refugio y sustento hasta que logran una talla de escape que les permite vivir en zonas costeras con una tasa de éxito óptima para la supervivencia.

Otras muchas especies utilizan, de manera más o menos asidua, estas zonas salobres para la alimentación: son especies carnívoras tolerantes a aguas salobres que aprovechan la influencia de las mareas para adentrarse en las zonas de cría de las especies que buscan refugio.
Fig. 6: Población de Tymanotonos fuscatus.

Algunas especies migratorias también hacen uso de estas zonas húmedas. Así, algunas especies catádromas (aquellas especies de agua dulce que se reproducen en el mar, como las anguilas) o especies anádromas (aquellas que viven en el mar y desovan en agua dulce, como algunos ciprínidos) pueden verse temporalmente por estos medios de transición, ya que permiten la adaptación progresiva a entornos con distintas salinidades.

En resumen, el conocimiento de la dinámica de los entornos húmedos, permiten valorar y ayudan a idear un plan para la gestión sostenible de estos sistemas, evitando o minimizando los impactos antropogénicos y gestionando de manera sostenible los recursos para una correcta conservación.

2.3.1. Características físico-químicas

Como norma general, la dinámica de un manglar es la siguiente: un aporte fluvial transporta materia orgánica junto con material lixiviado del suelo hasta una cuenca estuarina o de transición entre el medio marino y terrestre, donde se deposita gran parte de este material, y debido a la interacción de dos cuerpos de agua totalmente diferentes a nivel físico-químico (agua salada y agua dulce), se crea un bioma con unas condiciones muy particulares y poco comunes.

Los tres manglares estudiados demuestran este comportamiento general, aunque hay ciertas diferencias que serán analizadas en detalle más adelante. Todos coinciden en un parámetro importante como es la profundidad, similar y no muy grande (-1,5 m de máxima), por lo que los datos de muestreo han sido recogidos en cada punto, tanto con marea alta como con marea baja, y en dos cotas (cerca de superficie y cerca del fondo) cuando ha sido posible, con el fin de poder observar variaciones significativas que permitan diferenciar de manera sencilla las diferentes masas de agua estudiadas.

Los parámetros físico-químicos han sido medidos con una sonda multiparamétrica HANNA HI9829 durante los meses de noviembre y diciembre, justo después de terminar la estación lluviosa. Con esta sonda se midieron los siguientes parámetros:
profundidad, temperatura, salinidad, pH, conductividad, turbidez, porcentaje de oxígeno disuelto, resistividad, potencial redox, TDS, etc, hasta un total de 12. Las medidas han sido tomadas tanto en la zona superficial como cerca del fondo, con el fin de observar posibles variaciones en los parámetros estudiados, y las estaciones de toma de datos se han dividido en tres zonas con el objetivo de estudiar mejor los fenómenos que se dan en cada lugar. Así, tenemos la zona de bocana, donde la masa de agua dulce se introduce en el medio marino, de mayor hidrodinamismo generalmente. Debería darse una mezcla de ambos cuerpos de agua pero los parámetros deberían tender hacia características de medios salinos. La zona de transición es la zona donde ambas masas de agua interaccionan dentro del medio estuarino en condiciones más estables, generalmente el agua dulce (menos densa) por encima en la columna de agua, y la masa de agua salada, al ser más densa y por tanto más pesada, ocupando el fondo.

En función del hidrodinamismo principalmente, la interacción de ambas masas de agua dará lugar a una capa de mezcla más o menos estratificada u homogénea. La zona de interior es aquella en la que la masa de agua salada se introduce gracias a la acción de las mareas en el medio de agua dulce, pero su impacto tiende a ser cada vez menor dentro de la masa de agua dulce.

En el caso de los manglares de la isla de Príncipe hay que destacar que los tres manglares son físicamente muy diferentes: el manglar de Praia Caixão, que se ubica en el este de la isla y cerca de la Bahía das Agulhas, recibe el aporte fluvial del río Banzú, uno de los más caudalosos de la isla de Príncipe en la estación lluviosa. La playa de Caixão está muy expuesta al mar, con un alto hidrodinamismo, por lo que la dinámica...
de la cuenca donde se ubican los manglares hace que la tasa de renovación del agua, tanto dulce como salada, sea muy alta.

El manglar de Praia Salgada recibe el aporte de un pequeño arroyo en época seca y que aumenta considerablemente su caudal en épocas de lluvia. La playa se encuentra en la pequeña y protegida bahía de Abades, con un bajo hidrodinamismo, debido exclusivamente a la acción de las maresas.

El manglar de Praia Grande se encuentra en una laguna físicamente cerrada al mar por medio de una lengua de arena en su mayor parte asentada y consolidada por la vegetación, por lo que no existe hidrodinamismo ni influencia de las maresas.

2.3.2. Macrofauna bentónica

Con el fin de preservar al máximo los ecosistemas y tratar de influir lo menos posible en el equilibrio ecológico, el método inicial para el censo de organismos macroinvertebrados bentónicos ha sido la fotoidentificación, es decir: se recogen los datos ambientales y geográficos de la especie fotografiada, y posteriormente se realiza trabajo de gabinete con diversas guías y claves taxonómicas para la correcta identificación de las especies.

![Imagen de dos especies de crustáceos de los manglares: Cardisoma armatum y ejemplar hembra de Afruca tangeri.]

Entre los grupos taxonómicos identificados en los ecosistemas de manglar, se ha prestado mayor atención a la identificación de moluscos y crustáceos (Fig. 8). Cuando no ha sido posible la identificación de algún organismo, se ha procedido a su captura y se han fijado de manera individual en botes con alcohol al 96 %, alcohol al 70 %, o en formol tamponado al 4 % según el propósito de la muestra, para su posterior procesamiento en laboratorio. Al menos uno de los especímenes de cada especie colectada se ha almacenado para análisis molecular y filogenético.

El muestreo se ha llevado a cabo en las diferentes áreas funcionales de los manglares, dado que los parámetros físico-químicos actúan de barreras naturales y forman nichos.
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)

tróficos diversificados que son cubiertos por diferentes especies, incluso grupos taxonómicos. Mediante la observación in situ y colección de ejemplares, utilizando varios aparejos de pesca artesanal (redes de enmalle, mosquiteras, camaroneras y recolección manual), se ha creado un censo de especies de la macrofauna bentónica.

2.3.3. Especies ícticas

El estudio de especies piscícolas, se ha llevado a cabo mediante la observación in situ y colección de ejemplares, utilizando varios aparejos de pesca artesanal: redes de enmalle, mosquiteras, camaroneras y recolección manual (Fig. 9). En los tres manglares de la isla de Príncipe se ha llevado a cabo la operación de fijación y enmalle de una red de pesca de luz de malla adecuada a la legislación vigente del país por periodos de 14-15 horas para cubrir el ciclo completo de mareas.

La escasa disponibilidad de guías de identificación de especies ícticas locales, con descripciones, que hagan referencia a las especies nativas, así como las diferencias anatómicas entre estados de peces juveniles y adultos, hace difícil en ocasiones llegar hasta la clasificación efectiva de determinados ejemplares (Afonso et al., 1999; Wirtz et al., 2007, 2014; Vasco-Rodrigues et al., 2016).

Fig. 9: Peces Tose-tose (Aplocheilichthys spilauchen) y corcovado (Caranx sp.), capturados en los manglares.

Además, la presencia de varios estadios juveniles de las especies ícticas marinas, muchas veces con morfologías y libreas diferentes a las formas adultas, representa una dificultad añadida para la asignación de nombres científicos específicos.
3. ESTUDIO DE LOS MANGLARES

3.1. Manglar de Praia Salgada

Conocido también como manglar de Abades ya que se ubica en la bahía de Abades, dicha playa se encuentra a poco más de 3 km al este de la ciudad de São António. Se trata de una pequeña bahía con muy poco hidrodinamismo y con una profundidad máxima de 17 m, flanqueada por dos pequeñas colinas y con una estrecha bocaina que sirven de abrigo frente al embate del mar y los vientos del norte y del este.

![Vista panorámica de Praia Salgada y la Bahía de Praia Abade.](image)

En épocas de lluvia, el caudal aumenta considerablemente, inundando en su parte baja zonas del manglar que normalmente se encuentran más de un metro por encima de la línea de inundación, por lo que el cauce arrastra una considerable cantidad de materia detritiva en suspensión (sedimentos, ramas y hojas) que los deposita en la cercanía de la desembocadura del río, y hasta una profundidad máxima de 15 m (más de 150 m dentro del medio marino), sobre los fondos de arena de la bahía de Abades, formando zonas anóxicas y aguas turbias como así se ha podido comprobar mediante la campaña de sonar de barrido lateral realizada en esta bahía, durante la expedición científica Bio-Príncipe 2016 en noviembre.

Las costas rocosas densamente pobladas de vegetación flanquean la entrada a la bahía, y los fondos de arena con ripples pequeños/medianos donde se deposita el detrito provinente del manglar y la acción de las mareas los moldea, constituyen el hábitat principal en la bahía de Abades.
3.1.1. Vegetación

El estudio del manglar de Praia Salgada se ha realizado sobre una superficie total de 5,152 hectáreas, comenzando en la bocana de la ría que desagua en la playa y remontando el cauce del río casi 400 m, estudiando los 50 primeros metros de cada orilla con el fin de caracterizar los ecosistemas que conforman este bioma.

Los puntos de muestreo para la vegetación han sido previamente planeados a fin de mapear y caracterizar toda esta área, por tanto, la norma general ha sido muestrear cada 50 metros, siempre que el terreno y la vegetación lo permitan.

También se ha evitado (siempre que ha sido posible) los muestreos en zonas de agua, tanto pantanosas, como en el mar, obteniendo los siguientes resultados: de las 5,152 Ha caracterizadas, 0,672 Ha son de mangle *Rhizophora harrisonii* (13,045 %). La masa de agua ocupa 0,6 Ha (11,62 %) del área total. Predominan los siguientes hábitats: coqueral de inundación con 0,943 Ha (18,304 %), pantano arbustivo con 0,688 Ha (13,354 %), floresta secundaria con 0,644 Ha (12, 888 %). Floresta de inundación con 0,619 Ha (12,015 %) y matos con 0,487 Ha (9,452 %). Coqueral y palmeral ocupan el 6 % del área restante. Destaca la ausencia de campos de cultivo en esta zona.

![Diagrama de manglar de Praia Salgada](image_url)
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)

<table>
<thead>
<tr>
<th>Ecosistemas</th>
<th>Descripción</th>
<th>Ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manglar</td>
<td>Zona inundada o inundable por agua salada con cobertura arbórea de manglar (Rhizophora harrisonii).</td>
<td>0,672</td>
<td>13,045</td>
</tr>
<tr>
<td>Pantano herbáceo</td>
<td>Zona inundada o inundable con ausencia de especies arbóreas, con predominio de estrato herbáceo o arbustivo y posibles zonas de sedimentos expuestos.</td>
<td>0,688</td>
<td>13,354</td>
</tr>
<tr>
<td>Coqueral de inundación</td>
<td>Zonas de río rodeadas e inundadas con estrato arbóreo dominado por coqueiros (Cocos nucifera).</td>
<td>0,943</td>
<td>18,304</td>
</tr>
<tr>
<td>Palmeral de inundación</td>
<td>Zonas de río rodeadas e inundadas con estrato arbóreo dominado por palmeras (Elaeis guineensis).</td>
<td>0,153</td>
<td>2,970</td>
</tr>
<tr>
<td>Floresta de inundación</td>
<td>Zonas de río rodeadas e inundadas donde el estrato arbóreo es diversificado, compuesto por diferentes especies y ninguna predominante.</td>
<td>0,619</td>
<td>12,015</td>
</tr>
<tr>
<td>Coqueral</td>
<td>Zona no inundada con estrato arbóreo dominado por coqueiros (Cocos nucifera).</td>
<td>0,221</td>
<td>4,292</td>
</tr>
<tr>
<td>Palmeral</td>
<td>Zona no inundada con estrato arbóreo dominado por palmeras (Elaeis guineensis).</td>
<td>0,105</td>
<td>2,038</td>
</tr>
<tr>
<td>Campos</td>
<td>Zona no inundada de árboles pequeños donde se mantiene la horticultura</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Floresta secundaria</td>
<td>Zona no inundada de árboles frutales sin uso agrícola, como regeneración resultante de la eliminación de la vegetación original por la actividad humana.</td>
<td>0,664</td>
<td>12,888</td>
</tr>
<tr>
<td>Matos</td>
<td>Zona no inundada con predominio de arbustos y árboles bajos.</td>
<td>0,487</td>
<td>9,452</td>
</tr>
<tr>
<td>Agua</td>
<td>Zona cubierta por agua.</td>
<td>0,600</td>
<td>11,642</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>5,152</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 3: Tipos de ecosistemas identificados en Praia Salgada, el área que ocupan (Ha) y el porcentaje de área de estudio que representan.

Analizando las variables ambientales utilizadas para caracterizar los ecosistemas, se observa que el 54,5 % del terreno estudiado es llano, frente al 18,2 % que es ligeramente inclinado. El restante 27,3 % del terreno es inclinado, ya que se encuentra entre dos colinas. La cobertura arbórea, viene marcada por la frondosidad de las copas que dan lugar a un dosel frondoso y muy frondoso en el 73,8 % del área estudiada, con especies arbóreas de copa ancha y exuberante, por lo que la subcobertura del suelo tiende a baja, poco colonizada por los estratos herbáceos (72,8 %). El 23,2 % restante donde la cobertura arbórea es escasa, el terreno es ocupado de manera profusa por especies herbáceas, predominantemente *Acrostichum aureum* y hierbas de agua.

En la siguiente representación gráfica se puede observar la distribución de los hábitats que conforman el manglar de Praia Salgada:
El muestreo y contaje de individuos de mangle (*Rizophora harrisoni*) se ha llevado a cabo de manera aproximada (*a visu*), debido a su dificultad para acceder dado que la densidad de sus raíces no permite caminar entre ellos. La cobertura del sustrato vegetal herbáceo se ha considerado 0 (sin cobertura herbácea), puesto que en muy pocas ocasiones se han visto hierbas epífitas en alguno de los ejemplares.

Debido a la alta variabilidad de los resultados, se ha optado por aportar únicamente el área que ocupan. El manglar en esta zona se encuentra distribuido en tres zonas, siendo la mayor área la que abarca la práctica totalidad del hábitat, con individuos maduros de hasta 20 m de altura y un diámetro máximo de tronco (DAP) de hasta 12 cm que conforman un contorno (CAP) de 38 cm aproximadamente. Los individuos producen constantemente yemas folíferas en posición terminal y morfológicamente desnudas (Vargas, 2011). En Septiembre se comienzan a ver las primeras yemas floríferas, si bien antes de enero no habían producido flores. El fruto reproductor, alargado y de unos 20 cm de longitud aproximadamente, empieza a observarse discretamente a finales de noviembre y principios de diciembre. La población nativa comenta que los brotes florecen hacia los meses de abril y mayo, y los frutos maduran y caen hacia mediados de año.

Atendiendo a las especies arbóreas principales, la siguiente tabla (Tabla 4) y la correspondiente representación gráfica (Fig. 13), muestra los porcentajes de especies arbóreas (mayores de 40 cm de CAP):
<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Endemism</th>
<th>Status</th>
<th>Abund.</th>
<th>Frec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bananeira</td>
<td>Musa sp.</td>
<td>No</td>
<td>LC</td>
<td>6</td>
<td>2,15</td>
</tr>
<tr>
<td>Café</td>
<td>Coffea spp.</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,36</td>
</tr>
<tr>
<td>Cajamangueira</td>
<td>Spondias cytherea</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,36</td>
</tr>
<tr>
<td>Candeia</td>
<td>Hernandia beninensis</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,36</td>
</tr>
<tr>
<td>Carozeiro</td>
<td>Terminalia catappa</td>
<td>No</td>
<td>LC</td>
<td>8</td>
<td>2,87</td>
</tr>
<tr>
<td>Colma</td>
<td>Miletta thonningii</td>
<td>No</td>
<td>LC</td>
<td>5</td>
<td>1,79</td>
</tr>
<tr>
<td>Coqueiro</td>
<td>Cocos nucifera</td>
<td>No</td>
<td>LC</td>
<td>112</td>
<td>40,17</td>
</tr>
<tr>
<td>Eritrineira</td>
<td>Erytrina poepigiana</td>
<td>No</td>
<td>LC</td>
<td>10</td>
<td>3,59</td>
</tr>
<tr>
<td>Figueira</td>
<td>Ficus carica</td>
<td>No</td>
<td>LC</td>
<td>3</td>
<td>1,08</td>
</tr>
<tr>
<td>Fruteira</td>
<td>Artocarpus altillis</td>
<td>No</td>
<td>LC</td>
<td>32</td>
<td>11,48</td>
</tr>
<tr>
<td>Gofe</td>
<td>Cecropia peltata</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,36</td>
</tr>
<tr>
<td>Goiabeira</td>
<td>Psidium guajava</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,72</td>
</tr>
<tr>
<td>Grigô</td>
<td>Morinda lucida</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,72</td>
</tr>
<tr>
<td>Isaquinteiro</td>
<td>Treculia africana</td>
<td>No</td>
<td>LC</td>
<td>4</td>
<td>1,43</td>
</tr>
<tr>
<td>Lemba-lemba</td>
<td>Turraea thonningii</td>
<td>No</td>
<td>LC</td>
<td>4</td>
<td>1,43</td>
</tr>
<tr>
<td>Mamoeiro</td>
<td>Carica papaya</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,36</td>
</tr>
<tr>
<td>Mangle</td>
<td>Rhizophora harrisonii</td>
<td>No</td>
<td>LC</td>
<td>15</td>
<td>5,00</td>
</tr>
<tr>
<td>Moandí</td>
<td>Pentaclethra macrophilia</td>
<td></td>
<td></td>
<td>4</td>
<td>1,43</td>
</tr>
<tr>
<td>Palmeira</td>
<td>Elaeis guineensis</td>
<td>No</td>
<td>LC</td>
<td>13</td>
<td>4,66</td>
</tr>
<tr>
<td>Pau-leite</td>
<td>Funtumia africana</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,72</td>
</tr>
<tr>
<td>Pau-lisha</td>
<td>Ficus exasperata</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,72</td>
</tr>
<tr>
<td>Pinheiro</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>8,97</td>
</tr>
<tr>
<td>Safu-dÔbô</td>
<td>Pseudospondias microcarpa</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,36</td>
</tr>
</tbody>
</table>

Número total: 237 100,0

Tabla 4: Listado de especies arbóreas censadas en Praia Salgada.

Fig. 13: Distribución de las principales especies arbóreas del manglar de Praia Salgada.
El 47 % de los arboles contabilizados corresponden a coqueiros. Los mangles representan el 15 %, fruteira el 13 %, palmeira 5 % y Eritrineira 4 %. Como se observa, el bioma caracterizado es muy heterogéneo, con casi la mitad de la cobertura vegetal arbórea compuesta por coqueiros y el resto lo conforman hasta 17 diferentes especies arbóreas.

<table>
<thead>
<tr>
<th>FAMILIA</th>
<th>NOMBRE CIENTÍFICO</th>
<th>NOMBRE COMÚN (L - Lunguiê; F - Forro)</th>
<th>End.</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td>Asystasia gangetica</td>
<td>Folhia manbleble</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Adiantaceae</td>
<td>Pellaea doniana</td>
<td>Feto</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>Achyranthes aspera</td>
<td>Folhia punta, Ufiá-ponto (L)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Aspleniaceae</td>
<td>Asplenium africanum</td>
<td>Cocam-ubuê (L), Feto de árvor</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Cannaceae</td>
<td>Canna indica</td>
<td>Salaconta</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Commelina diffusa</td>
<td>Capim d’água; Bodó-bodó (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Senna sophera</td>
<td>Maioba-plê (F)</td>
<td>No</td>
<td>NT</td>
</tr>
<tr>
<td>Flacouriaceae</td>
<td>Casearia barteri</td>
<td>Bóbô-bóbô (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Lomariopsidaceae</td>
<td>Lomariopsis warneckei</td>
<td></td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Marattiaaceae</td>
<td>Marattia fraxinea</td>
<td>Feto</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Ficus sp.</td>
<td>Figo-tordo (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Piperaceae</td>
<td>Piper umbellatum</td>
<td>Ufiá-boba-d’Obô</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Setaria megaphylla</td>
<td>Uága-uága (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Polypodiaceae</td>
<td>Drynaria sp</td>
<td></td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Pteridaceae</td>
<td>Achrostericum aureum</td>
<td>Feto-de-mangal</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Rizophoraceae</td>
<td>Rizophora harrisoni</td>
<td>Mangue-da-praia</td>
<td>No</td>
<td>NT</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Bertiera racemosa</td>
<td>Café d’Obô</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Solanaceae</td>
<td>Cestrum laevigatum</td>
<td>Coedano (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Tectariaceae</td>
<td>Tectaria sp.</td>
<td>Fiá-glesa (F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urticaceae</td>
<td>Cecropia peltata</td>
<td>Gofê</td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td>Zingiberaceae</td>
<td>Aframomum danielli</td>
<td>Ossami (L; F)</td>
<td>No</td>
<td>LC</td>
</tr>
</tbody>
</table>

Tabla 5: Listado de las principales especies herbáceas del manglar de Praia Salgada.

Fig. 14: Panorámica de la cuenca de transición y ribera de *Achrostericum aureum* (Praia Salgada).
Respecto a los arbustos y hierbas, en Praia Salgada se han censado hasta 22 especies diferentes, una de ellas sin identificar, correspondientes a 22 familias distintas. Destacan *Rizophora harrisoni* y *Senna sophera* por encontrarse casi en peligro según la IUCN (2017). Entre el resto de las especies censadas predominan helechos de ambientes inundables y hierbas de uso alimentario y medicinal como: *bôbô-bôbô* (*Casearia barteri*) que es usado como antipirético y diurético; la *salaconta* (*Canna indica*), con un alto poder nutritivo, sirve de alimento y su savia como antiséptico y para aliviar las quemaduras. La corteza de la raíz de *maioba-plé* (*Senna sophera*) se utiliza para la preparación de medicamento para tratar desórdenes respiratorios. Los frutos de *ossami* (*Aframomum danielii*) para condimentar platos regionales, y los de *gofê* (*Cecropia deltata*) y *café d’Obô* (*Bertiera racemosa*) son muy utilizados en ginecología para abortar o provocar el parto y como remedio para aliviar los síntomas de la malaria (Bussman et al., 2006).

3.1.2. Aves

En total se detectaron 1.533 aves pertenecientes a 26 especies, 10 de ellas especies endémicas y 3 subespecies más, lo que supone que el 50 % de las especies observadas son endémicas de las islas del Golfo de Guinea (Melo y Jones, 2008).

Como indica la siguiente tabla, se puede observar los datos tomados en el manglar de Praia Salgada, con 4 puntos de avistamiento diseminados para abarcar toda el área a estudio. En total han sido observados 688 especímenes de aves pertenecientes a 24 especies diferentes, datos que arrojan una media de 43 aves por cada 10 minutos de muestreo y una media de 19,5 especies por punto de avistamiento.

De todos estos avistamientos, 394 aves (57,27 %) corresponden a especies endémicas, y otras 77 aves (11,2 %) corresponden a subespecies endémicas.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Andorinha de barriga blanca</td>
<td>Zoonavena thomensis</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>67</td>
<td>100</td>
</tr>
<tr>
<td>Andorinha de palmeira</td>
<td>Cypsiurus parvus</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>36</td>
<td>75</td>
</tr>
<tr>
<td>Céssia</td>
<td>Treron sanctithomae</td>
<td>No</td>
<td>VU</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>Chó-chó</td>
<td>Halcyon malimbica dryas</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Conóbia</td>
<td>Alcedo cristata thomensis</td>
<td>Subespecie (P)</td>
<td>-</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Curucucu</td>
<td>Streptopelia senegalensis</td>
<td>Subespecie (ST)</td>
<td>LC</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>Estorninho do Príncipe</td>
<td>Lamprotornis ornatus</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Estorninho bóbó</td>
<td>Lamprotornis splendidius</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>167</td>
<td>100</td>
</tr>
<tr>
<td>Falcão</td>
<td>Milvus migrans</td>
<td>No</td>
<td>LC</td>
<td>13</td>
<td>75</td>
</tr>
<tr>
<td>Garça boieira (braca)</td>
<td>Bubulcus ibis</td>
<td>No</td>
<td>LC</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Garça boieira (preta)</td>
<td>Bubulcus ibis?</td>
<td>No</td>
<td>LC</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Garça dos recifis</td>
<td>Egretta gularis</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Merlo</td>
<td>Ploceus princeps</td>
<td>No</td>
<td>LC</td>
<td>89</td>
<td>100</td>
</tr>
<tr>
<td>Munquê</td>
<td>Columba larvata principalis</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>Papagaio</td>
<td>Psittacus erithacus</td>
<td>Subespecie (ST)</td>
<td>EN</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>Papatela grande</td>
<td>Numenius phaeopus</td>
<td>No</td>
<td>LC</td>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>Papatela pequeño</td>
<td>Actitis hypoleucos</td>
<td>No</td>
<td>LC</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Peito branco</td>
<td>Zosterops leucophaeus</td>
<td>No</td>
<td>NT</td>
<td>42</td>
<td>100</td>
</tr>
<tr>
<td>Rola</td>
<td>Columba malherbii</td>
<td>Especie (P)</td>
<td>NT</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Tchibi barbeiro</td>
<td>Anabathmis hartlaubii</td>
<td>Especie (STPA)</td>
<td>LC</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>Tchibi peito branco</td>
<td>Horizorhinus dohrni</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>32</td>
<td>100</td>
</tr>
<tr>
<td>Tchibi singa</td>
<td>Lonchura cucullata</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>Tchonzu</td>
<td>Butorides striata</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>7</td>
<td>75</td>
</tr>
</tbody>
</table>

Sp. No ID | 1 | 25 |

TOTAL | 688 |

Tabla 6: Listado de especies de aves observadas en Praia Salgada. El "endemismo" indica si la especie es endémica de las islas del Golfo de Guinea: São Tomé (ST), Príncipe (P), Anobom (A), y nivel de especie o subespecie (Melo y Jones, 2008). El "status" se refiere a la categoría de conservación de acuerdo con la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (IUCN, 2017): NE: Not Evaluated (no evaluado), LC: Least Concern (preocupación menor), NT: Near Threatened (casi amenazado), VU: VUnerable o EN: ENdangered (en peligro). La "Abundancia" indica el número de especímenes registrados. La "frecuencia" indica el porcentaje de puntos de muestreo en los que la especie ha sido avistada.

Las especies más abundantes son: Estorninho bóbó (*Lamprotornis splendidus*) con 167 individuos avistados; Merlo (*Ploceus princeps*) con 89 aves registradas; Andorinha de barriga blanca (*Zoonavena thomensis*) con 67 individuos; Conóbia (*Alcedo cristata thomensis*) con 44 aves observadas y Peito branco (*Zosterops leucophaeus*) con 42 registros. Estas especies son también las más frecuentes junto a: Céssia (*Treron sanctithomae*), Chó-chó (*Halcyon malimbica dryas*), Papagaio (*Psittacus erithacus*), Papatela grande (*Numenius phaeopus*), Papatela pequeño (*Actitis hypoleucos*), Rola (*Columba malherbii*), Tchibi barbeiro (*Anabathmis hartlaubii*), Tchibi peito branco (*Horizorhinus dohrni*) y Tchibi singa (*Lonchura cucullata*), y han sido observadas en todos los puntos de avistamiento de aves.
Por el contrario, de Estorninho do Príncipe (*Lamprotornis ornatus*) solo se observaron 2 individuos en uno de los puntos de avistamiento. Otro individuo de una especie no identificada también fue avistado.

![Imágenes de aves](image)

Fig. 16: Diversidad de aves en Praia Salgada; Merlo (*Ploceus princeps*), Peito branco (*Zosterops leucophaeus*) y Falcão (*Milvus migrans*).

Respecto a las especies de la Lista Roja de especies amenazadas de la IUCN 2017, destacan principalmente dos especies: Papagaio (*Psittacus erithacus*), con un elevado número de avistamientos en los tres manglares a estudio (117 en total), ya que se encuentra en la categoría de ENdangered, por ser una especie vistosa y muy codiciada como animal de compañía. Céssia (*Treron calvus virescens*) con 40 ejemplares que han sido observados en Praia Grande y Praia Salgada, se encuentra en estado VUlnerable. Como especies casi amenazadas (NT) aparecen: Peito branco (*Zosterops leucophaeus*) con un total de 90 reportes y presencia en los tres manglares, y Rola (*Columba malherbii*) con 18 ejemplares avistados en Praia Grande y Praia Salgada.

3.1.3. Características físico-químicas

El manglar de Praia Salgada recibe el aporte fluvial del sinuoso río Agua Grande (con poco caudal en época de Gravana y bastante más caudaloso en épocas de lluvia) y desemboca en la pequeña y resguardada bahía de Abades, resguardada del viento y los embates del mar de dirección norte. El río desemboca concretamente en la zona este de Praia Salgada, en una estrecha bocana de unos 20 m de ancho, por lo que la acción de las mareas en esta zona es perfectamente visible, y en marea entrante se observa cómo pequeños trenes de ondas remontan hasta la laguna de la zona de transición, zona que se adentra varios centenares de metros, hasta un pequeño pantano herbáceo donde se ubican los últimos individuos de *Rhizophora harrisonii*.
El constante aporte de agua dulce junto con las mareas, permiten una alta tasa de renovación de los cuerpos de agua dentro del estuario. Estudiando los perfiles de salinidad, se observan dos masas de agua diferentes: agua salada y agua dulce. Sin embargo, destaca el valor bajo del agua de mar en la zona de bocana (menor de 30 ppm). Esto es debido seguramente al aporte de agua dulce que se lleva dando a lo largo del tiempo, y que se mezcla produciendo una disminución en la salinidad de la masa de agua marina circundante. A medida que esta masa de agua de mar se va introduciendo en la zona de transición, el proceso de mezcla tiende a igualar los parámetros, como se puede observar en este caso en la salinidad. En la zona interior, donde el influjo de las mareas no llega y el aporte de agua dulce es superior, el valor de salinidad lógicamente disminuye a valores de agua salobre (15-20 ppm).

En la gráfica de concentración de oxígeno se observa cómo la masa de agua marina posee un valor normal (en torno a 80 mg/l), que disminuye ligeramente a medida que se adentra en el estuario posiblemente por el proceso de oxidación de la materia
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)

orgánica depositada en el fondo. La masa de agua dulce aumenta considerablemente en la zona de transición y bocana, debido al proceso de mezcla originado por el hidrodinamismo marino.

En el parámetro de turbidez, se observa cómo el agua dulce arrastra mucha materia en suspensión. A medida que el agua desciende por la zona de transición, la profundidad y el cauce aumentan por lo que el hidrodinamismo disminuye, posándose en el fondo la materia y aumentando su valor (valores muy altos de más de 160 NTU en algunos puntos de la zona de transición).

Respecto a los valores de temperatura y pH, comentar que ambos valores se mantienen dentro de la normalidad (entre 29 y 30 °C; pH cercano a 8, alcalino) y que tienden a igualarse debido a la interacción entre las dos masas de agua. Así la temperatura menor del agua dulce aumenta ligeramente hasta igualarse a la del agua de mar, y el pH menor del agua dulce tiende a disminuir el del agua salada a medida que se introduce en el estuario hasta la cabecera del río.

3.1.4. Macrofauna bentónica

Mediante la observación directa y la recolección de especímenes para su posterior estudio en el laboratorio, se han observado en el manglar de Praia Salgada al menos 24 especies de animales clasificados como macrofauna, divididas en: 13 especies pertenecientes al phylum mollusca y otras 11 especies pertenecientes de crustáceos (subphylum de los artrópodos).

![Fig. 18: Bivalvos encontrados en Praia Salgada; Tagelus adansonii y Senilia senilis.](image.png)

Las 13 especies de moluscos identificadas, 7 son caracoles y 6 son bivalvos, pertenecen a 10 familias diferentes. Dentro del grupo de los bivalvos, 3 son especies de ostras y 3 son diferentes especies de almeja, las cuales, junto con el buzio de terra (recurso muy apreciado y codiciado en la isla), constituyen una parte esencial de la dieta de las poblaciones locales en las zonas costeras.
Respecto a las 11 especies de crustáceos, pertenecientes a 8 familias diferentes, salvo una especie de camarón, todas las demás pertenecen a diferentes familias de decápodos (cangrejos), siendo varias de ellas un recurso alimentario importante para la población.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Familia</th>
<th>Especie</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustaceae</td>
<td>Coenobitidae</td>
<td>Coenobita rubescens</td>
<td>Eremita de terra</td>
</tr>
<tr>
<td>Crustaceae</td>
<td>Gecarcinidae</td>
<td>Cardisoma armatum</td>
<td>Carangejo de mangue</td>
</tr>
<tr>
<td>Crustaceae</td>
<td>Gecarcinidae</td>
<td>Johngarthia weieri</td>
<td>Cracke</td>
</tr>
<tr>
<td>Crustaceae</td>
<td>Grapsidae</td>
<td>Goniopsis peli</td>
<td>Caranguejo preto</td>
</tr>
<tr>
<td>Crustaceae</td>
<td>Grapsidae</td>
<td>Grapsus adscensionis</td>
<td>Caranguejo de roca</td>
</tr>
<tr>
<td>Crustaceae</td>
<td>Ocypodidae</td>
<td>Afruca tangeri</td>
<td>Caranguejo violinista</td>
</tr>
<tr>
<td>Crustaceae</td>
<td>Ocypodidae</td>
<td>Ocypode cursor</td>
<td>Caranguejo fantasma</td>
</tr>
<tr>
<td>Crustaceae</td>
<td>Palaemonidae</td>
<td>Palaemon sp.</td>
<td>Camaron de mangue</td>
</tr>
<tr>
<td>Crustaceae</td>
<td>Portunidae</td>
<td>Callinectes sp.</td>
<td>Caranguejo tartaruga</td>
</tr>
<tr>
<td>Crustaceae</td>
<td>Sesarmidae</td>
<td>Perisesarma guttatum</td>
<td></td>
</tr>
<tr>
<td>Crustaceae</td>
<td></td>
<td>Cangrejo sp 2 no ID</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Archatinidae</td>
<td>Archachatina marginata</td>
<td>Buzio de terra</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Arcidae</td>
<td>Senilia senilis</td>
<td>Ameijoa</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Hipponicidae</td>
<td>Hipponix antiquatus</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Littorininae</td>
<td>Echinolittorina tuberculata</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Littorininae</td>
<td>Echinolittorina caboverdensis</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Mactridae</td>
<td>Leptospisula nivea</td>
<td>Ameijoa</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Muricidae</td>
<td>Tymanotonos fuscatus</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Neritidae</td>
<td>Clypeolum owenianum</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Ostreidae</td>
<td>Saccostrea cucullata</td>
<td>Ostra</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Solecurtidae</td>
<td>Tagelus adansonii</td>
<td>Ameijoa</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td>Gastropoda sp.no ID</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td>Ostreidae sp. No ID</td>
<td>Ostra</td>
</tr>
</tbody>
</table>

Tabla 7: Listado de organismos de macrofauna bentónica censados en Praia Salgada.

En el caso del cracke, que está considerado como un manjar por la población regional, es un plato típico de la cultura gastronómica local, siendo frecuente en festividades y celebraciones populares.

Las diversas especies de bivalvos forman parte de la dieta diaria junto a la pesca artesanal de las comunidades costeras.

Los lugareños hablan de otra(s) especie(s) de camarón(es) que recolectan para consumo, pero durante el presente estudio no se ha tenido constatación de su presencia en Praia Salgada, probablemente al no ser el período de año adecuado.
3.1.5 Ictiofauna

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especie</th>
<th>Nombre común</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bothidae</td>
<td>Arnoglossus imperialis</td>
<td>Lenguado</td>
<td>J</td>
</tr>
<tr>
<td>Elopidae</td>
<td>Elops senegalensis</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>Gerreidae</td>
<td>Eucinostomus melanopterus</td>
<td></td>
<td>J/A</td>
</tr>
<tr>
<td>Gobiidae</td>
<td>Periophthalmus barbarus</td>
<td>Cucumba</td>
<td>J/A</td>
</tr>
<tr>
<td>Gobiidae</td>
<td>Xarroco sp. 1</td>
<td></td>
<td>J/A</td>
</tr>
<tr>
<td>Gobiidae</td>
<td>Xarroco sp. 2</td>
<td></td>
<td>J/A</td>
</tr>
<tr>
<td>Haemulidae</td>
<td>Plectorhinus macrolepis</td>
<td>Peixe porco</td>
<td>J</td>
</tr>
<tr>
<td>Haemulidae</td>
<td>Pomadasys sp.</td>
<td>Roncador</td>
<td>J</td>
</tr>
<tr>
<td>Lutjanidae</td>
<td>Lutjanus agennes</td>
<td>Corvina</td>
<td>J</td>
</tr>
<tr>
<td>Lutjanidae</td>
<td>Lutjanus sp. 1</td>
<td>Corvina</td>
<td>J</td>
</tr>
<tr>
<td>Mugilidae</td>
<td>Liza dumerili</td>
<td>Tainha</td>
<td>J</td>
</tr>
<tr>
<td>Mugilidae</td>
<td>Liza grandisquamis</td>
<td>Tainha</td>
<td>J</td>
</tr>
<tr>
<td>Poeciliidae</td>
<td>Aplocheilichthys spilauchen</td>
<td>Tose-tose</td>
<td>J/A</td>
</tr>
</tbody>
</table>

Tabla 8: Listado de especies de peces censados en Praia Salgada. El término fase corresponde a la edad de los individuos, siendo J (juvenil) el estado de inmadurez sexual y A (adulto) individuos en edad de reproducción según sus gónadas.

En el manglar de Praia Salgada se han censado un total de 13 especies de peces, pertenecientes a 8 familias. De las 13 especies, 8 de ellas son especies comerciales para consumo humano, y la especie de lenguado Arnoglossus imperialis es la primera observación y cita que se tiene para el São Tomé e Príncipe.

![Fig. 19: Ejemplares capturados de Liza grandisquamis y Arnoglossus imperialis.](image)

De entre todas las especies destaca la cucumba (Periophthalmus barbarus) por ser un pez pulmonado característico de manglares, con un alto valor turístico y ecológico, ya que solo se encuentra en estos ambientes y es indicador de la buena salud de la que goza el manglar, debido a que esta especie es altamente sensible a alteraciones medioambientales producidas por la actividad industrial del ser humano. Ocasionalmente se encuentra en agua dulce, pero siempre cerca de la orilla. Respirador anfibio que salta o camina sobre la arena o el barro en busca de comida, los
adultos se alimentan principalmente de artrópodos (cangrejos, insectos, etc.) sobre la superficie del lodo. Vive y se reproduce en madrigueras horadadas en el fango.

El pez Tose-tose (*Aplocheilichthys spilauchen*), especie inicialmente encontrada por Rossignon (1999) en el río Papagayo, es la única especie de agua dulce *in sensu stricto* encontrada en la parte alta de los manglares. El resto de especies corresponden a especies marinas que ocasionalmente, o en los primeros estados de su ciclo vital, utilizan aguas salobres para alimentarse, reproducirse o refugiarse.

3.2. Manglar de Praia Grande

3.2.1. Vegetación

El estudio del manglar de Praia Grande se ha realizado sobre una superficie total de 8,931 hectáreas, de las que 2,523 son agua de la laguna y efluentes. Se han estudiado y caracterizado los 50 primeros metros de vegetación que se ubican al borde de la laguna y las entradas de agua dulce que descargan en ella, con el fin de caracterizar los ecosistemas que conforman este bioma.

![Fig. 20: Vista aérea del manglar de Praia Grande y puntos de muestreo.](image)

Los puntos de muestreo para la vegetación han sido previamente planeados a fin de mapear y caracterizar toda el área. Como se trata de un área bastante extensa, la norma general ha sido muestrear cada 100 metros, siempre que el terreno y la vegetación lo permitan. También se ha evitado (siempre que ha sido posible) los muestreos en zonas de agua, tanto pantanosas, como en el mar, como se puede observar en la siguiente tabla:
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)

<table>
<thead>
<tr>
<th>Ecosistemas</th>
<th>Descripción</th>
<th>Ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manglar</td>
<td>Zona inundada o inundaible por agua salada con cobertura arbórea de manglar (Rhizophora harrisonii).</td>
<td>0,038</td>
<td>0,422</td>
</tr>
<tr>
<td>Pantano herbáceo</td>
<td>Zona inundada o inundaible con ausencia de especies arbóreas, con predominio de estrato herbáceo o arbustivo y posibles zonas de sedimentos expuestos.</td>
<td>0,455</td>
<td>5,095</td>
</tr>
<tr>
<td>Coqueral de inundación</td>
<td>Zonas de río rodeadas e inundaes con estrato arbóreo dominado por coquer (Cocos nucifera).</td>
<td>1,621</td>
<td>18,256</td>
</tr>
<tr>
<td>Palmeral de inundación</td>
<td>Zonas de río rodeadas e inundaes con estrato arbóreo dominado por palmeras (Elaeis guineensis).</td>
<td>0,212</td>
<td>2,474</td>
</tr>
<tr>
<td>Floresta de inundación</td>
<td>Zonas de río rodeadas e inundaes donde el estrato arbóreo es diversificado, compuesto por diferentes especies y ninguna predominante.</td>
<td>0,492</td>
<td>5,530</td>
</tr>
<tr>
<td>Coqueral</td>
<td>Zona no inundada con estrato arbóreo dominado por coquer (Cocos nucifera).</td>
<td>1,364</td>
<td>15,273</td>
</tr>
<tr>
<td>Palmeral</td>
<td>Zona no inundada con estrato arbóreo dominado por palmeras (Elaeis guineensis).</td>
<td>0,443</td>
<td>5,060</td>
</tr>
<tr>
<td>Campos</td>
<td>Zona no inundada de árboles pequeños donde se mantiene la horticultura</td>
<td>0,906</td>
<td>10,247</td>
</tr>
<tr>
<td>Floresta secundaria</td>
<td>Zona no inundada de árboles frutales sin uso agrícola, como regeneración resultante de la eliminación de la vegetación original por la actividad humana.</td>
<td>0,877</td>
<td>9,820</td>
</tr>
<tr>
<td>Matos</td>
<td>Zona no inundada con predominio de arbustos y árboles bajos.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Agua</td>
<td>Zona cubierta por agua.</td>
<td>2,523</td>
<td>28,245</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8,931</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 9: Tipos de ecosistemas identificados en Praia Grande, el área que ocupan (Ha) y el porcentaje de área de estudio que representan.

El manglar de Praia Grande es muy pequeño, con un área de 0,038 Ha, compuesto por una pequeña población de no más de 30 individuos, y varios individuos muy jóvenes, asentados de manera aislada a lo largo de la ribera montañosa, representando el 0,422 % del área total caracterizada. Los ecosistemas principales que componen este bioma, son: coqueral de inundación con 1,621 Ha (18,256 %), coqueral con 1,364 Ha (15,273), floresta secundaria con 0,906 (10,247 %) y matos con 0,877 (9,82 %). Los palmerales y el pantano arbustivo componen el resto del área estudiada. No se observan campos de cultivo aunque la floresta secundaria de especies arbóreas frutales es significativa, con multitud de especies. En la siguiente representación gráfica (Fig. 21) se puede observar la distribución de los hábitats que conforman el manglar de Praia Grande.

Analizando las variables ambientales utilizadas para caracterizar los ecosistemas, se observa que el 71,4 % del terreno estudiado no tiene declive, con un 85,7 % del dosel arbóreo frondoso o muy frondoso. En estos puntos, la subcobertura terrestre en el
92,8 % del área estudiada es baja o muy baja, con pocas especies herbáceas creciendo de manera aislada. En 14,2 % del área que presenta poca cobertura arbórea, se observa un aumento significativo de las especies del sustrato herbáceo, así como una cobertura copiosa y abundante en el 7,1 %.

![Fig. 21: Distribución de hábitats del manglar de Praia Grande.](image)

El muestreo y contaje de individuos de mangle (*Rizophora harrisoni*) se ha llevado a cabo de manera aproximada (*a visu*), debido a su dificultad para acceder dado que la densidad de sus raíces no permite caminar entre ellos. La cobertura del sustrato vegetal herbáceo se ha considerado 0 (sin cobertura herbácea), puesto que en muy pocas ocasiones se han visto hierbas epífitas en alguno de los ejemplares.

Debido a la alta variabilidad de los resultados, se ha optado por aportar únicamente el área que ocupan. El manglar que se ubica en la laguna de Praia Grande, es francamente pequeño; compuesto por menos de una veintena de individuos maduros de hasta 20 m de altura y un diámetro máximo de tronco (DAP) de hasta 10 cm que conforman un contorno (CAP) de 32 cm aproximadamente. Los individuos producen constantemente yemas folíferas en posición terminal y morfológicamente desnudas (Vargas, 2011). En Septiembre se comienzan a ver las primeras yemas floríferas, si bien antes de enero no habían producido flores. No se han observado frutos durante el estudio.

A lo largo de la orilla de la laguna, también han sido observados individuos jóvenes creciendo aisladamente. Los nativos de la zona comentan que este manglar ha ido en
regresión por la tala indiscriminada de los ejemplares para la tinción de redes de pesca. El crecimiento de ejemplares jóvenes de manera diseminada hace pensar que el manglar tiende a recuperarse. Atendiendo a las especies arbóreas principales, la siguiente tabla (Tabla 10) y la correspondiente representación gráfica (Fig. 22), muestra los porcentajes de especies arbóreas (mayores de 40 cm de CAP):

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Endemism</th>
<th>Status</th>
<th>Abund.</th>
<th>Frec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoreira</td>
<td>Milicia excelsa</td>
<td>No</td>
<td>NT</td>
<td>5</td>
<td>0,90</td>
</tr>
<tr>
<td>Bananeira</td>
<td>Musa sp.</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Bolinha</td>
<td>Xylopia staudtii</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Cacauero</td>
<td>Theobroma cacao</td>
<td>No</td>
<td>LC</td>
<td>7</td>
<td>1,26</td>
</tr>
<tr>
<td>Carozeiro</td>
<td>Terminalia catappa</td>
<td>No</td>
<td>LC</td>
<td>5</td>
<td>0,90</td>
</tr>
<tr>
<td>Colma</td>
<td>Miletta thonningii</td>
<td>No</td>
<td>LC</td>
<td>37</td>
<td>6,66</td>
</tr>
<tr>
<td>Coqueiro</td>
<td>Cocos nucifera</td>
<td>No</td>
<td>LC</td>
<td>236</td>
<td>42,48</td>
</tr>
<tr>
<td>Eritrinae</td>
<td>Erytrina poeppigiana</td>
<td>No</td>
<td>LC</td>
<td>19</td>
<td>3,42</td>
</tr>
<tr>
<td>Figueira</td>
<td>Ficus carica</td>
<td>No</td>
<td>LC</td>
<td>9</td>
<td>1,62</td>
</tr>
<tr>
<td>Fruteira</td>
<td>Artocarpus altidis</td>
<td>No</td>
<td>LC</td>
<td>3</td>
<td>0,54</td>
</tr>
<tr>
<td>Gofe</td>
<td>Cecropia peltata</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,36</td>
</tr>
<tr>
<td>Goiabeira</td>
<td>Psidium guajava</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Guêguê</td>
<td>Spondias mombin</td>
<td>No</td>
<td>LC</td>
<td>7</td>
<td>1,26</td>
</tr>
<tr>
<td>Grigô</td>
<td>Morinda lucida</td>
<td>No</td>
<td>LC</td>
<td>10</td>
<td>1,80</td>
</tr>
<tr>
<td>Isaquinteiro</td>
<td>Treculia africana</td>
<td>No</td>
<td>LC</td>
<td>31</td>
<td>5,58</td>
</tr>
<tr>
<td>Jaqueira</td>
<td>Artocarpus heterophyllus</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Lemba-lemba</td>
<td>Turraea thonningii</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,36</td>
</tr>
<tr>
<td>Mamoeiro</td>
<td>Carica papaya</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Mangue</td>
<td>Rhizaphora harrisonii</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>Manguere</td>
<td>Mangifera indica</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Marapinhao</td>
<td>Fagara macrophylla</td>
<td>No</td>
<td>LC</td>
<td>3</td>
<td>0,54</td>
</tr>
<tr>
<td>Moandí</td>
<td>Pentaclethra macrophilia</td>
<td>No</td>
<td>LC</td>
<td>11</td>
<td>1,98</td>
</tr>
<tr>
<td>Mucumbli</td>
<td>Lannea welwitschii</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,36</td>
</tr>
<tr>
<td>Oká pequeno</td>
<td>Ceiba pentandra</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Palmeira</td>
<td>Elaeis guineensis</td>
<td>No</td>
<td>LC</td>
<td>96</td>
<td>17,28</td>
</tr>
<tr>
<td>Pau-caixão</td>
<td>Pycnanthus angolenses</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Pau-esteira</td>
<td>Pandanus candelabrus</td>
<td>Especie (ST)</td>
<td>VU</td>
<td>2</td>
<td>0,36</td>
</tr>
<tr>
<td>Pau-ferro</td>
<td>Margaritaria discoidea</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Pau-leite</td>
<td>Funtumia africana</td>
<td>No</td>
<td>LC</td>
<td>12</td>
<td>2,16</td>
</tr>
<tr>
<td>Pau-lilha</td>
<td>Ficus exasperata</td>
<td>No</td>
<td>LC</td>
<td>22</td>
<td>3,96</td>
</tr>
<tr>
<td>Pau-rola</td>
<td></td>
<td></td>
<td>LC</td>
<td>11</td>
<td>1,98</td>
</tr>
<tr>
<td>Pinheiro</td>
<td></td>
<td>No</td>
<td>LC</td>
<td>11</td>
<td>1,98</td>
</tr>
<tr>
<td>Safu-dôbô</td>
<td>Pseudospondias microcarpa</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,36</td>
</tr>
<tr>
<td>Sap-sap</td>
<td>Annona muricata</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,36</td>
</tr>
<tr>
<td>Sp. 1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,18</td>
</tr>
<tr>
<td>Sp. 2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,54</td>
</tr>
</tbody>
</table>

Número total: 550 100,0

Tabla 10: Listado de especies arbóreas censadas en Praia Grande.

Respecto a los arbustos y hierbas, en Praia Grande se han censado hasta 29 especies diferentes, 6 de ellas sin identificar, correspondientes a 23 familias distintas. Destacan
las especies: *Pandanus candelabrus* por ser un endemismo autóctono en estado vulnerable, y *Rizophora harrisoni* y *Senna sophera* por encontrarse casi en peligro (IUCN 2017).

Entre el resto de las especies censadas, predominan helechos de ambientes inundables y hierbas de uso alimentario y medicinal como: bôbô-bôbô que es usado como antipirético y diurético; la salaconta, con un alto poder nutritivo, sirve de alimento y su savia como antiséptico y para aliviar las quemaduras. El benguê se utiliza como antiinflamatorio y para el tratamiento de multitud de afecciones digestivas, respiratorias, fiebres, conjuntivitis y heridas. Y la corteza de la raíz de maioba-plé se utiliza para la preparación de medicamento para tratar desórdenes respiratorios.
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)

<table>
<thead>
<tr>
<th>FAMILIA</th>
<th>NOMBRE CIENTÍFICO</th>
<th>NOMBRE COMÚN (L - Lunguiê; F - Forro)</th>
<th>Endemismo</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td>Asystasia gangetica</td>
<td>Folhia mamblêblê</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Adiantaceae</td>
<td>Pellaea doniana</td>
<td>Feto</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>Achyrantes aspera</td>
<td>Folhia punta, Ufiá-ponto (L)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>Achyrantes sp</td>
<td>Folhia cubano, Ufiá-cubano (L)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Aspleniaceae</td>
<td>Asplenium africanum</td>
<td>Cocam-ubê (L), Feto de árvor</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Boraginaceae</td>
<td>Sp. 1 no ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannaceae</td>
<td>Canna indica</td>
<td>Salaconta</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Commelina diffusa</td>
<td>Capim d’água; Bodô-bodô (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Alchornea cordifolia</td>
<td>Benguê, Bengui (L; F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Senna sophera</td>
<td>Maioba-plê (F)</td>
<td>No</td>
<td>NT</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Sp. 2 no ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flacourtiaceae</td>
<td>Casearia barteri</td>
<td>Bôbô-bôbô (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Lomariopsidace</td>
<td>Lomariopsis warneckei</td>
<td></td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Marattiaceae</td>
<td>Marattia fraxinea</td>
<td>Feto</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Ficus sp.</td>
<td>Figo-tordo (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Pandanaceae</td>
<td>Pandanus candelabrus</td>
<td>Pau-esteira</td>
<td>Especie (STP)</td>
<td>VU</td>
</tr>
<tr>
<td>Piperaceae</td>
<td>Piper umbellatum</td>
<td>Ufiá-boba-d’Obô</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Setaria megaphylla</td>
<td>Uá-ga-uága (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Sp. 3 no ID</td>
<td>Capim-d’agua</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polypodiaceae</td>
<td>Drynaria sp</td>
<td></td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Pteridaceae</td>
<td>Achrasticrum aureum</td>
<td>Feto-de-mangal</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Rizopheraceae</td>
<td>Rizophora harrisoni</td>
<td>Mangue-da-praia</td>
<td>No</td>
<td>NT</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Bertiera racemosa</td>
<td>Café d’Obô</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Sp. 4 no ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tectariaceae</td>
<td>Tectaria sp.</td>
<td>Fiá-glesa (F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urticaceae</td>
<td>Cecropia peltata</td>
<td>Gofê</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Zingiberaceae</td>
<td>Aframomum daniellii</td>
<td>Ossami (L; F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feto d’água no ID. 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feto d’água no ID. 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 11: Listado de las principales especies herbáceas del manglar de Praia Grande.

3.2.2. Aves

Como indica la siguiente tabla, en el manglar de Praia Grande, con 4 puntos de avistamiento, se observaron 526 aves de 21 especies diferentes, lo que corresponde a una media de 32,88 aves por cada 10 minutos de avistamiento y una media de 14,75 especies por punto de avistamiento. De todos estos avistamientos, 266 aves (50,57 %) corresponden a especies endémicas, y otras 130 aves (24,72 %) corresponden a subespecies endémicas.

Las especies más abundantes son: Papagaio (*Psittacus erithacus*) con 117 aves observadas; Estorninho bôbô (*Lamprotornis splendidus*) con 105 avistamientos; Andorinha de barriga branca (*Zoonavena thomensis*) con 56 especímenes contabilizados; Merlo (*Ploceus princeps*) y Tchibi peito branco (*Horizorhinus dohrni*).
con 53 ejemplares observados para cada especie. Todas estas especies son también las que más frecuentemente se han visto, junto a: Céssia (*Treron calvus virescens*), Chó-chó (*Halcyon malimbica dryas*) y Peito branco (*Zosterops leucophaeus*), ya que han sido observadas en todos los puntos de muestreo de Praia Grande. Por el contrario, las especies menos frecuentes son: Garça dos recifis (*Egretta gularis*) y Munquê (*Columba larvata principalis*), con dos avistamientos únicamente en uno de los puntos de muestreo.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Andorinha de barriga branca</td>
<td>Zoonavena thomensis</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>56</td>
<td>100</td>
</tr>
<tr>
<td>Andorinha de palmeira</td>
<td>Cypsiurus parvus</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Céssia</td>
<td>Treron calvus virescens</td>
<td>No</td>
<td>VU</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>Chó-chó</td>
<td>Halcyon malimbica dryas</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>Condibia</td>
<td>Alcedo cristata thomensis?</td>
<td>Subespecie (P)?</td>
<td>-</td>
<td>13</td>
<td>75</td>
</tr>
<tr>
<td>Curruccu</td>
<td>Streptopelia senegalensis</td>
<td>Subespecie (ST)</td>
<td>LC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Estorninhalo do Príncipe</td>
<td>Lamprotornis ornatus</td>
<td>No</td>
<td>LC</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Estorninho bôbô</td>
<td>Lamprotornis splendidus</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>105</td>
<td>100</td>
</tr>
<tr>
<td>Falcão</td>
<td>Milvus migrans</td>
<td>No</td>
<td>LC</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Garça boieira (braca)</td>
<td>Bubulcus ibis</td>
<td>No</td>
<td>LC</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Garça boieira (preta)</td>
<td>Bubulcus ibis?</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Garça dos recifis</td>
<td>Egretta gularis</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Merlo</td>
<td>Ploceus princeps</td>
<td>No</td>
<td>LC</td>
<td>53</td>
<td>100</td>
</tr>
<tr>
<td>Munquê</td>
<td>Columba larvata principalis</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Papagaio</td>
<td>Psittacus erithacus</td>
<td>Subespecie (ST)</td>
<td>EN</td>
<td>117</td>
<td>100</td>
</tr>
<tr>
<td>Papataela grande</td>
<td>Numenius phaeopus</td>
<td>No</td>
<td>LC</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>Papataela pequeno</td>
<td>Actitis hypoleucos</td>
<td>No</td>
<td>LC</td>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>Peito branco</td>
<td>Zosterops leucophaeae</td>
<td>No</td>
<td>NT</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Rola</td>
<td>Columba malherbii</td>
<td>Especie (P)</td>
<td>NT</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>Tchibi barbeiro</td>
<td>Anabathmis hartlaubii</td>
<td>Especie (STPA)</td>
<td>LC</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>Tchibi peito branco</td>
<td>Horizarhinus dohrni</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>53</td>
<td>100</td>
</tr>
<tr>
<td>Tchibi singa</td>
<td>Lonchura cucullata</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tchonzu</td>
<td>Butorides striata</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>526</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 12: Listado de especies de aves observadas en Praia Grande. El "endemismo" indica si la especie es endémica de las islas del Golfo de Guinea: São Tomé (ST), Principe (P), Anobom (A), y nivel de especie o subespecie (Melo y Jones 2008). El "status" se refiere a la categoría de conservación de acuerdo con la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (IUCN 2017): NE: Not Evaluated (no evaluado), LC: Least Concern (preocupación menor), NT: Near Threatened (casi amenazado), VU: VUnerable o EN: ENdangered (en peligro). La “Abundancia” indica el número de ejemplares registrados. La “frecuencia” indica el porcentaje de puntos de muestreo en los que la especie ha sido avistada.

Respecto a las especies de la Lista Roja de especies amenazadas de la IUCN 2017, destacan principalmente dos especies: Papagaio (*Psittacus erithacus*), con un elevado número de avistamientos en los tres manglares a estudio (117 en total), ya que se encuentra en la categoría de ENdangered, por ser una especie vistosa y muy codiciada.
como animal de compañía. Céssia (*Treron calvus virescens*) con 40 ejemplares que han sido observados en Praia Grande y Praia Salgada, se encuentra en estado VUnerable. Como especies casi amenazadas (NT) aparecen: Peito-branco (*Zosterops leucophaeus*) con un total de 90 reportes y presencia en los tres manglares, y Rola (*Columba malherbii*) con 18 ejemplares avistados en Praia Grande y Praia Salgada.

3.2.3. Características físico-químicas

Finalmente se encuentra el manglar de Praia Grande, que recibe agua dulce del serpenteante río que nace en la zona de Paciencia, con poca agua en época de Gravana y bastante caudaloso cuando llueve, formando una enorme laguna cerrada de algo más de 2,5 hectáreas, que entre 3 y 4 veces al año cede y se abre al mar por acción de las lluvias. En consecuencia, el comportamiento físico-químico que se observa en este manglar varía notablemente en función de las condiciones climáticas.

Respecto al manglar de Praia Grande y debido a su geomorfología, es interesante el estudio de los diversos fenómenos físicos y químicos que acontecen. Como se ha comentado anteriormente, se trata de un estuario con una laguna de poco más de 2,5 hectáreas, cerrada por una barra de arena. Posee una suave pendiente que hace que la profundidad aumente en la parte central hasta -1,5m.

![Representaciones gráficas de parámetros físico-químicos de Praia Grande.](image-url)
No se observan cambios en el nivel de agua por acción de las mareas, por lo que todo hace pensar que la tasa de intercambio de agua salada debería ser menor al de los dos manglares comentados. Debido a las lluvias y a la acción del hombre, esta barra se abre 3-4 veces al año, y parte del agua de la laguna desemboca en el mar, hasta que los niveles se igualan. La dinámica costera se encarga posteriormente de volver a cerrar la laguna.

Debido a la geomorfología, la cual ha sido afectada por las acciones humanas, estas zonas de manglares tienen una menor tasa de intercambio de agua, y por lo tanto tienen grandes áreas potenciales de retención de materia orgánica, biomasa de fitoplancton y nutrientes.

Estudiando los datos de los parámetros recogidos, llaman la atención varias anomalías en los valores de salinidad, concentración de oxígeno y temperatura. Con respecto a los datos de salinidad, se observa claramente dos masas de agua: la más superficial (provincente de escorrentía) tiene menor valor de salinidad, y la que se encuentra en el fondo posee una alta salinidad (hasta 35 ppm). Estos valores de salinidad observados en la laguna y algunas zonas del interior son los valores más altos obtenidos de los tres manglares, con valores similares al agua de mar (valores de referencia obtenidos con la sonda en varios puntos de la costa). Teniendo en cuenta que la laguna normalmente está cerrada, los datos apuntan a una posible intrusión por filtración del agua de mar.

En cuanto al parámetro del oxígeno, hay que tener en cuenta la dinámica de la zona a estudio, ya que aunque se trata de una cuenca cerrada físicamente al mar, el hecho de que la laguna rompa 3-4 veces al año el dique arenoso que se forma en la playa y evacúe agua al medio marino, y el aporte prácticamente constante de agua dulce, hace que la masa de agua se esté “ventilando” u oxigenando, de manera que no se llega nunca a condiciones de anoxia o suboxia. Sin embargo, el alto aporte de materia que acarrea el aporte fluvial, puede encajarse en zonas con menos dinámica que si puede estar agotando oxígeno para oxidar esta materia orgánica, aportando valores ligeramente menores de concentración de oxígeno (por debajo de 70 mg/l en algunas zonas del interior). Valores ligeramente bajos de ORP así lo corroboran. Por otro lado, valores extremadamente altos de oxígeno (hasta 130 mg/l) en ciertos puntos de la masa de agua salada del fondo, dan a entender que existe algún proceso por el que esta masa de agua se renueva.

Con respecto al pH, se observa que es mayor el aporte del medio marino ya que los valores observados generalmente (pH=8), se acercan más a valores de agua de mar que a aguas de escorrentía. Sin embargo el aporte de agua dulce, con un pH menor, hace que tiendan a igualarse, arrojando resultados menores de pH=8.
Todos estos resultados apuntan a que hay algún tipo de filtración del mar a través de la barrera de arena formada en la playa y consolidada por la vegetación existente, ya que se observa una anomalía importante comparando Praia Grande con los otros dos manglares que tienen aportes directos de agua de mar: los valores de salinidad encontrados son los mayores, muy similares a los valores de agua de mar. Valores de ORP por debajo de la media puntualmente junto con valores bajos de la concentración de oxígeno, demuestran que existe un proceso de oxidación de la materia orgánica depositada en zonas del interior y posiblemente en la laguna. Sin embargo este proceso no se ve claramente en la laguna porque un posible aporte de agua salada por filtración renueva los valores de oxígeno (Officer, 1981).

3.2.4. Macrofauna bentónica

En el manglar de Praia Grande se han observado hasta 5 especies diferentes de moluscos, con dos especies de caracoles, dos especies de almejas y una especie de ostra, cada una correspondiente a una familia.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Familia</th>
<th>Especie</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustacea</td>
<td>Atyidae</td>
<td>Atya sp.</td>
<td>Camaron de mangue</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Coenobitidae</td>
<td>Coenobita rubescens</td>
<td>Eremita de terra</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Gecarcinidae</td>
<td>Cardisoma armatum</td>
<td>Caranguejo de mangue</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Gecarcinidae</td>
<td>Johngarthia weileri</td>
<td>Cracke</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Grapsidae</td>
<td>Goniopsis pelii</td>
<td>Caranguejo preto</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Ocypodidae</td>
<td>Afrupa tangeri</td>
<td>Caranguejo violinista</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Ocypodidae</td>
<td>Ocypode cursor</td>
<td>Caranguejo fantasma</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Palaemonidae</td>
<td>Palaemon sp.</td>
<td>Camaron de mangue</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Portunidae</td>
<td>Callinectes sp.</td>
<td>Caranguejo tartaruga</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Sesarmidae</td>
<td>Perisesarma guttatum</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Archatinidae</td>
<td>Archachatina marginata</td>
<td>Buzio de terra</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Mactridae</td>
<td>Leptospisula nivea</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Muricidae</td>
<td>Tympotononos fuscatus</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Ostreidae</td>
<td>Saccostrea cucullata</td>
<td>Ostra</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Solecurtidae</td>
<td>Tagelus adansonii</td>
<td>Ameijoa</td>
</tr>
</tbody>
</table>

Tabla 13: Listado de organismos de macrofauna bentónica censados en Praia Grande.

De las 10 especies de crustáceos observados, 8 corresponden a diversas familias de cangrejos y 2 son especies de 2 familias de camarones.

Una de las especies de camarón es muy apreciada entre la población como alimento, igual que el buzio de terra, los bivalvos y varias especies de cangrejos, con los que se elaboran platos suculentos para celebraciones y festividades.
3.2.5 Ictiofauna

En el manglar de Praia Grande se han censado un total de 10 especies de peces, pertenecientes a 6 familias. De los 10 registros, 6 de ellos son especies comerciales para consumo humano.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especie</th>
<th>Nombre común</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carangidae</td>
<td>Caranx sp.</td>
<td>Corcovado</td>
<td>J</td>
</tr>
<tr>
<td>Gobiidae</td>
<td>Bostrychus africanus</td>
<td>Xarroco sp. 1</td>
<td>J/A</td>
</tr>
<tr>
<td>Gobiidae</td>
<td>Periophthalmus barbarus</td>
<td>Cucumba</td>
<td>J/A</td>
</tr>
<tr>
<td>Gobiidae</td>
<td>Xarroco sp. 2</td>
<td></td>
<td>J/A</td>
</tr>
<tr>
<td>Gobiidae</td>
<td>Xarroco sp. 3</td>
<td></td>
<td>J/A</td>
</tr>
<tr>
<td>Haemulidae</td>
<td>Plectorhinchus macrolepis</td>
<td>Peixe porco</td>
<td>J</td>
</tr>
<tr>
<td>Lutjanidae</td>
<td>Lutjanus sp. 2</td>
<td>Corvina</td>
<td>J</td>
</tr>
<tr>
<td>Monodactylidae</td>
<td>Monodactylus sebae</td>
<td>Cozinheiro</td>
<td>J</td>
</tr>
<tr>
<td>Mugilidae</td>
<td>Liza dumerili</td>
<td>Tainha</td>
<td>J</td>
</tr>
<tr>
<td>Mugilidae</td>
<td>Liza grandisquamis</td>
<td>Tainha</td>
<td>J</td>
</tr>
</tbody>
</table>

Tabla 14: Listado de especies de peces censados en Praia Salgada. El término fase corresponde a la edad de los individuos, siendo J (juvenil) el estado de inmadurez sexual y A (adulto) individuos en edad de reproducción según sus gónadas.

Destaca la especie *Periophthalmus barbarus* (cucumba) por ser un pez pulmonado característico de manglares, con un alto valor turístico y ecológico, ya que solo se encuentra en estos ambientes y es indicador de la buena salud de la que goza el manglar, ya que esta especie es altamente sensible a alteraciones medioambientales producidas por la actividad industrial del ser humano.

También destaca la especie *Monodactylus sebae*, muy común en estuarios, lagunas y cursos inferiores de ríos donde se reproduce, a veces ascendiendo largas distancias en agua dulce. También vive en el mar, principalmente en bahías poco profundas y áreas portuarias, alimentándose de pescado, camarones y zooplancton.

Fig. 25: Toma de datos y muestras.
3.3. Manglar de Praia Caixão

3.3.1. Vegetación

El estudio del manglar de Praia Caixão se ha realizado sobre una superficie total de 7,422 Ha, comenzando desde la bocana del río Banzú, y remontando el cauce casi 300 metros, estudiando los primeros 50 metros de cada orilla del río, afluentes y pequeñas lagunas que se forman en la margen derecha, con el fin de caracterizar los ecosistemas que conforman este bioma.

![Fig. 26: Vista aérea del manglar de Praia Caixão y puntos de muestreo.](image)

Como se trata de un área bastante extensa, la norma general ha sido muestrear cada 75 metros, siempre que el terreno y la vegetación lo han permitido. También se ha evitado (siempre que ha sido posible) los muestreos en zonas de agua, tanto pantanosas, como en el mar, como se puede observar en la tabla 15.

De las 7,422 Ha caracterizadas en Praia Caxão, 0,538 Ha corresponden al hábitat de manglar (7,248 % del área total). El río, efluentes y las pequeñas lagunas que se forman en la margen derecha ocupan 1,089 Ha (14,678 %). Los ecosistemas predominantes son: floresta secundaria con 1,631 Ha (el 21,976 % del área estudiada), coqueral con 1,286 Ha (17,327 %), matos con 0,735 Ha (9,909 %), coqueral de inundación con 0,693 Ha (9,337 %), floresta de inundación con 0,681 Ha (9,176 %) y pantano arbustivo con 5,095 Ha (7,491 %). El 2,857 % restante lo conforma el palmeral. Destaca la ausencia de campos de cultivo en esta zona.
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)

<table>
<thead>
<tr>
<th>Ecosistemas</th>
<th>Descripción</th>
<th>Ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manglar</td>
<td>Zona inundada o inundable por agua salada con cobertura arbórea de manglar (Rhizophora harrisonii).</td>
<td>0,538</td>
<td>7,248</td>
</tr>
<tr>
<td>Pantano herbáceo</td>
<td>Zona inundada o inundable con ausencia de especies arbóreas, con predominio de estrato herbáceo o arbustivo y posibles zonas de sedimentos expuestos.</td>
<td>0,556</td>
<td>7,491</td>
</tr>
<tr>
<td>Coqueral de inundación</td>
<td>Zonas de río rodeadas e inundadas con estrato arbóreo dominado por coqueros (Cocos nucifera).</td>
<td>0,693</td>
<td>9,337</td>
</tr>
<tr>
<td>Palmeral de inundación</td>
<td>Zonas de río rodeadas e inundadas con estrato arbóreo dominado por palmeras (Elaeis guineensis).</td>
<td>0,122</td>
<td>1,644</td>
</tr>
<tr>
<td>Floresta de inundación</td>
<td>Zonas de río rodeadas e inundadas donde el estrato arbóreo es diversificado, compuesto por diferentes especies y ninguna predominante.</td>
<td>0,681</td>
<td>9,176</td>
</tr>
<tr>
<td>Coqueral</td>
<td>Zona no inundada con estrato arbóreo dominado por coqueros (Cocos nucifera).</td>
<td>1,286</td>
<td>17,327</td>
</tr>
<tr>
<td>Palmeral</td>
<td>Zona no inundada con estrato arbóreo dominado por palmeras (Elaeis guineensis).</td>
<td>0,09</td>
<td>1,213</td>
</tr>
<tr>
<td>Campos</td>
<td>Zona no inundada de árboles pequeños donde se mantiene la horticultura</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Floresta secundaria</td>
<td>Zona no inundada de árboles frutales sin uso agrícola, como regeneración resultante de la eliminación de la vegetación original por la actividad humana.</td>
<td>1,631</td>
<td>21,976</td>
</tr>
<tr>
<td>Matos</td>
<td>Zona no inundada con predominio de arbustos y árboles bajos.</td>
<td>0,735</td>
<td>9,909</td>
</tr>
<tr>
<td>Agua</td>
<td>Zona cubierta por agua.</td>
<td>1,089</td>
<td>14,679</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>7,422</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 15: Tipos de ecosistemas identificados en Praia Caixão, el área que ocupan (Ha) y el porcentaje de área de estudio que representan.

Analizando las variables ambientales utilizadas para caracterizar los ecosistemas, se observa que Praia Caixão es un área eminentemente llana, con una ligera pendiente en el 30 % del terreno estudiado. La cobertura del dosel arbóreo es frondosa o muy frondosa en el 60 % del área a estudio, con una alta biodiversidad de especies grandes, lo que produce una baja o muy baja cobertura herbácea en estas zonas. En el 10 % donde la cobertura es muy baja, las especies herbáceas colonizan el sustrato terrestre de manera discreta, siendo solamente un 20 % del área donde las hierbas son profusas o muy profusas.

En la siguiente representación gráfica (Fig. 27) se puede observar la distribución de los hábitats que conforman el manglar de Praia Caixão.
El muestreo y contaje de individuos de mangle (*Rizophora harrisoni*) se ha llevado a cabo de manera aproximada (*a visu*), debido a su dificultad para acceder dado que la densidad de sus raíces no permite caminar entre ellos. La cobertura del sustrato vegetal herbáceo se ha considerado 0 (sin cobertura herbácea), puesto que en muy pocas ocasiones se han visto hierbas epifitas en alguno de los ejemplares.

Debido a la alta variabilidad de los resultados, se ha optado por aportar únicamente el área que ocupan.

El manglar en esta zona se encuentra distribuido en tres zonas, siendo la mayor área la que abarca la práctica totalidad del hábitat, con individuos maduros de hasta 20 m de altura y un diámetro máximo de tronco de hasta 12 cm que conforman un contorno de 38 cm aproximadamente. Los individuos producen constantemente yemas folíferas en posición terminal y morfológicamente desnudas (Vargas, 2011). En Septiembre se comienzan a ver las primeras yemas floríferas, si bien antes de enero no habían producido flores. El fruto reproductor observado, es alargado y de 20 cm aproximadamente, empezando a observarse discretamente a finales de noviembre y principios de diciembre. La población local comenta que los brotes florecen hacia los meses de abril y mayo, y los frutos maduran y comienzan a caer hacia mediados de año.

Atendiendo a las especies arbóreas principales, la siguiente tabla (Tabla 16) y la correspondiente representación gráfica (Fig. 28), muestra los porcentajes de especies arbóreas (mayores de 40 cm de CAP):
<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Endemism</th>
<th>Status</th>
<th>Abund.</th>
<th>Frec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bambú</td>
<td>Bambusa vulgar</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td>Cacaueiro</td>
<td>Theobroma cacao</td>
<td>No</td>
<td>LC</td>
<td>2</td>
<td>0,81</td>
</tr>
<tr>
<td>Café</td>
<td>Coffea spp.</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td>Candeia</td>
<td>Hernandia beninensis</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td>Carozero</td>
<td>Terminalia catappa</td>
<td>No</td>
<td>LC</td>
<td>16</td>
<td>6,50</td>
</tr>
<tr>
<td>Colma</td>
<td>Milettia thonningii</td>
<td>No</td>
<td>LC</td>
<td>6</td>
<td>2,44</td>
</tr>
<tr>
<td>Coqueiro</td>
<td>Cocos nucifera</td>
<td>No</td>
<td>LC</td>
<td>69</td>
<td>28,03</td>
</tr>
<tr>
<td>Eritrineira</td>
<td>Erytrina poeppigiana</td>
<td>No</td>
<td>LC</td>
<td>16</td>
<td>6,50</td>
</tr>
<tr>
<td>Figueira</td>
<td>Ficus carica</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td>Isaquinteiro</td>
<td>Trecula africana</td>
<td>No</td>
<td>LC</td>
<td>30</td>
<td>12,19</td>
</tr>
<tr>
<td>Lemba-lemba</td>
<td>Turraea thonningii</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td>Mangue</td>
<td>Rhizophora harrisonii</td>
<td>No</td>
<td>LC</td>
<td>4</td>
<td>1,63</td>
</tr>
<tr>
<td>Marapinhao</td>
<td>Fagara macrophylla</td>
<td>No</td>
<td>LC</td>
<td>22</td>
<td>8,94</td>
</tr>
<tr>
<td>Mucumbli</td>
<td>Lannea welwitschii</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td>Palmeira</td>
<td>Elaeis guineensis</td>
<td>No</td>
<td>LC</td>
<td>37</td>
<td>15,03</td>
</tr>
<tr>
<td>Pau-caixão</td>
<td>Pycnanthus angolenses</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td>Pau-fuba</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,81</td>
</tr>
<tr>
<td>Pau-leite</td>
<td>Funtumia africana</td>
<td>No</td>
<td>LC</td>
<td>7</td>
<td>2,84</td>
</tr>
<tr>
<td>Pau-lisha</td>
<td>Ficus exasperata</td>
<td>No</td>
<td>LC</td>
<td>3</td>
<td>1,22</td>
</tr>
<tr>
<td>Pinheiro</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,81</td>
</tr>
<tr>
<td>Safu-dÔbô</td>
<td>Pseudospondias microcarpa</td>
<td>No</td>
<td>LC</td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td>Número total:</td>
<td></td>
<td></td>
<td></td>
<td>224</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabla 16: Listado de especies arbóreas censadas en Praia Caixão.

Fig. 28: Distribución de las principales especies arbóreas del manglar de Praia Caixão.
Respecto a los arbustos y hierbas, en Praia Caxão se han censado hasta 19 especies diferentes correspondientes a 19 familias distintas. Destacan las especies: *Rizophora harrisoni* y *Senna sophera* por encontrarse casi en peligro (IUCN 2017).

<table>
<thead>
<tr>
<th>FAMILIA</th>
<th>NOMBRE CIENTÍFICO</th>
<th>NOMBRE COMÚN (L - Lunguí; F - Forro)</th>
<th>End.</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td>Asystasia gangetica</td>
<td>Ufiá-mamblêblê (L), Folhia manbleble</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Adiantaceae</td>
<td>Pellaea doniana</td>
<td>Feto</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>Achyrantes sp</td>
<td>Folhia cubano,Ufiá-cubano (L)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Aspleniaceae</td>
<td>Asplenium africanum</td>
<td>Cocam-ubuê (L),Feto de árvor</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Cannaceae</td>
<td>Canna indica</td>
<td>Salaconta</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Commelina diffusa</td>
<td>Capim d’água; Bodó-bodó (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Senna sophera</td>
<td>Maioba-plé (F)</td>
<td>No</td>
<td>NT</td>
</tr>
<tr>
<td>Flacourtiaceae</td>
<td>Casearia barteri</td>
<td>Bôbô-bôbô (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Lomariopsidae</td>
<td>Lomariopsis warneckei</td>
<td></td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Marattiaceae</td>
<td>Marattia fraxinea</td>
<td>Feto</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Ficus sp.</td>
<td>Figo-tordo (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Setaria megaphylla</td>
<td>Uága-uága (F)</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Polypodiaceae</td>
<td>Drynaria sp</td>
<td></td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Pteridaceae</td>
<td>Achroisticrum aureum</td>
<td>Feto-de-mangal</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Rizophoraceae</td>
<td>Rizophora harrisoni</td>
<td>Mangue-da-praia</td>
<td>No</td>
<td>NT</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Bertiera racemosa</td>
<td>Café d’Obô</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Tectariaceae</td>
<td>Tectaria sp.</td>
<td>Fiá-glesa (F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urticaceae</td>
<td>Cecropia deltata</td>
<td>Gofê</td>
<td>No</td>
<td>LC</td>
</tr>
<tr>
<td>Zingiberaceae</td>
<td>Aframomum danielii</td>
<td>Ossami (L; F)</td>
<td>No</td>
<td>LC</td>
</tr>
</tbody>
</table>

Tabla 17: Listado de las principales especies herbáceas del manglar de Praia Caixão.

Entre el resto de las especies censadas, predominan helechos de ambientes inundables y hierbas de uso alimentario y medicinal como: bôbô-bôbô que es usado como antipirético y diurético, la salaconta, con un alto poder nutritivo, sirve de alimento y su savia como antiséptico y para aliviar las quemaduras. La corteza de la raíz de maioba-plé se utiliza para la preparación de medicamento para tratar desórdenes respiratorios. Los frutos de ossami para condimentar platos regionales, y los de gofê y café d’Obô, son muy utilizados en ginecología para abortar o provocar el parto y como remedio para aliviar los síntomas de la malaria (Bussman et al., 2006).

Fig. 29: Uága-uága (*Setaria megaphylla*), Café d’Obô (*Bertiera racemosa*) y Salaconta (*Canna indica*).
3.3.2. Aves

Como indica la siguiente tabla, en el manglar de Praia Caixão, con 3 puntos de avistamiento, se observaron 319 aves de 15 especies diferentes, lo que corresponde a una media de 27 aves por cada 10 minutos de avistamiento y una media de 12,67 especies por punto de avistamiento. De todos estos avistamientos, 166 aves (52,04 %) corresponden a especies endémicas, y otras 70 aves (21,94 %) corresponden a subespecies endémicas.

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Endemismo</th>
<th>Stat.</th>
<th>Ab.</th>
<th>Frec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andorinha de barriga branca</td>
<td>Zoonavena thomensis</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>34</td>
<td>66</td>
</tr>
<tr>
<td>Andorinha de palmeira</td>
<td>Cypsiurus parvus</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>Céssia</td>
<td>Treron calvus virescens</td>
<td>No</td>
<td>VU</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chó-chó</td>
<td>Halcyon malimbica dryas</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>Conóbia</td>
<td>Alcedo cristata thomensis?</td>
<td>Subespecie (P)</td>
<td>-</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Currucucu</td>
<td>Streptopelia senegalensis</td>
<td>Subespecie (ST)</td>
<td>LC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Estorninho do Príncipe</td>
<td>Lamprotornis ornatus</td>
<td>No</td>
<td>LC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Estorninho bôbô</td>
<td>Lamprotornis splendidas</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>68</td>
<td>100</td>
</tr>
<tr>
<td>Falcão</td>
<td>Milvus migrans</td>
<td>No</td>
<td>LC</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Garça boieira (braca)</td>
<td>Bubulcus ibis</td>
<td>No</td>
<td>LC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Garça boieira (preta)</td>
<td>Bubulcus ibis?</td>
<td>No</td>
<td>LC</td>
<td>4</td>
<td>66</td>
</tr>
<tr>
<td>Garça dos recifis</td>
<td>Egretta gularis</td>
<td>No</td>
<td>LC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Merlo</td>
<td>Ploceus princeps</td>
<td>No</td>
<td>LC</td>
<td>17</td>
<td>66</td>
</tr>
<tr>
<td>Munquê</td>
<td>Columba larvata principalis</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>Papagaio</td>
<td>Psittacus erithacus</td>
<td>Subespecie (ST)</td>
<td>EN</td>
<td>35</td>
<td>100</td>
</tr>
<tr>
<td>Papatela grande</td>
<td>Numenius phaeopius</td>
<td>No</td>
<td>LC</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>Papatela pequeno</td>
<td>Actitis hypoleucus</td>
<td>No</td>
<td>LC</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Peito branco</td>
<td>Zosterops leucophaeus</td>
<td>No</td>
<td>NT</td>
<td>31</td>
<td>100</td>
</tr>
<tr>
<td>Rola</td>
<td>Columba malherbi</td>
<td>Especie (P)</td>
<td>NT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tchibi barheiro</td>
<td>Anabathmis hartlaubii</td>
<td>Especie (STPA)</td>
<td>LC</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Tchibi peito branco</td>
<td>Horizorhinus dohrni</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>Tchibi singa</td>
<td>Lonchura cucullata</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tchonzu</td>
<td>Botorides striata</td>
<td>Especie (STP)</td>
<td>LC</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL 319

Tabla 18: Listado de especies de aves observadas en Praia Caixão. El "endemismo" indica si la especie es endémica de las islas del Golfo de Guinea: São Tomé (ST), Príncipe (P), Anobom (A), y nivel de especie o subespecie (Melo y Jones 2008). El "status" se refiere a la categoría de conservación de acuerdo con la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (IUCN 2017): NE: No evaluado, LC: Least Concern (preocupación menor), NT: Near Threatened (Casi Amenazado), VU: VUlnerable o EN: ENdangered (en peligro). La “Abundancia” indica el número de especímenes registrados. La “frecuencia” indica el porcentaje de puntos de muestreo en los que la especie ha sido avistada.

Las especies más abundantes son: Estorninho bôbô (*Lamprotornis splendidas*) con 68 ejemplares avistados; Conóbia (*Alcedo cristata thomensis?*) y Papagaio (*Psittacus erithacus*) con 35 observaciones, y Andorinha de barriga branca (*Zoonavena thomensis*) con 34 reportes. Las especies más frecuentes, que han sido vistas en todos
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)

los puntos de muestreo son: Chó chó (Halcyon malimbica dryas), Conóbia (Alcedo cristata thomensis?), Estorninho bóbó (Lamprotornis splendidus), Falcão (Milvus migrans), Papagaio (Psittacus erithacus), Papatela grande (Numenius phaeopus), Papatela pequeño (Actitis hypoleucus), Peito branco (Zosterops leucophaeus), Tchibi barbeiro (Anabathmis hartlaubii) y Tchibi peito branco (Horizorhinus dohrni). Por el contrario, las especies menos frecuentes son: Andorinha de palmeira (Cypsiurus parvus) con 3 ejemplares observados, y un solo individuo de Munquê (Columba larvata principalis).

Respecto a las especies de la Lista Roja de especies amenazadas de la IUCN 2017, destacan principalmente dos especies: Papagaio (Psittacus erithacus), con un elevado número de avistamientos en los tres manglares a estudio (117 en total), ya que se encuentra en la categoría de ENdangered, por ser una especie vistosa y muy codiciada como animal de compañía. Y como especie casi amenazada (NT) se ha reportado: Peito-branco (Zosterops leucophaeus) con un total de 90 reportes y presencia en los tres manglares.

3.3.3. Características físico-químicas

Analizando los datos de los parámetros físico-químicos obtenidos, en la gráfica de salinidad se observa que destacan dos masas de agua, que se comportan de manera muy diferente: el agua salada de mar, al poseer una densidad mayor que el agua dulce, se hunde y avanza sobre el fondo por acción de las mareas, adentrándose en la cuenca estuarina. El agua dulce con menor densidad, flota sobre el agua de mar y ambas actúan como dos masas de aguas totalmente diferenciadas, con una alta estratificación vertical. A medida que se remonta el río, se observa cómo la influencia de la masa de agua salada va disminuyendo, y sobre los 200-250 m río arriba ya no es perceptible la influencia de la marea y por tanto del cuerpo de agua salada. Destaca el valor de
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)

La salinidad de la masa de agua de mar es de 23 ppm, ligeramente inferior al valor de referencia medido en el mar (32 ppm). Esta disminución será debida posiblemente a la mezcla con aporte de agua dulce por hidrodinamismo.

Como se ha comentado anteriormente, Praia Caixão posee una alta tasa de renovación de los cuerpos de agua, lo que conlleva valores altos de oxígeno (valores de 80-90 mg/l). Solamente el valor de concentración de oxígeno de la masa de agua de mar disminuye ligeramente en la zona de transición, que es donde se ubican los manglares, posiblemente debido al proceso de reducción de la materia orgánica que se encuentra en esta zona con grandes cantidades de sedimentos. En la parte interior, donde la profundidad disminuye considerablemente y la interacción del agua dulce con agua salada aumenta, los valores de concentración de oxígeno vuelven a subir como es lógico.

Fig. 31: Representaciones gráficas de parámetros físico-químicos de Praia Caixão.
Respecto al factor de turbidez, destacar que el alto hidrodinamismo del mar ofrece valores altos en la bocana para el agua salada (más de 50 NTU en momentos puntuales de turbulencia) y a medida que se introduce en el medio estuarino, disminuye su velocidad por la fricción con el cuerpo de agua dulce y por tanto disminuye la turbidez (valores máximos de 30 NTU). El agua dulce por el contrario tiene valores más altos en la zona interior debido principalmente al hidrodinamismo producido por la poca profundidad (valores máximos menores de 20 NTU), que arrastra los materiales disueltos y los deposita en la zona de transición.

Como se ha observado, las tasas de renovación de las masas de agua son altas, por lo que factores como la temperatura o el pH permanecen constantes, con un ligero incremento en la parte de la bocana. La masa de agua salada es más caliente que la de agua dulce, por lo que a medida que interaccionan, intercambian calor y tienden a igualarse (26-28 °C). Con el pH ocurre lo mismo: la masa de agua marina posee un pH ligeramente superior, que tiende a igualarse durante el proceso de interacción con el agua dulce (valores en torno a pH=8 alcalino).

3.3.4. Macrofauna bentónica

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Familia</th>
<th>Especie</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustacea</td>
<td>Atyidae</td>
<td>Atya sp.</td>
<td>Camaron de mangue</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Coenobitidae</td>
<td>Coenobita rubescens</td>
<td>Eremita de terra</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Gecarcinidae</td>
<td>Cardisoma armatum</td>
<td>Caranguejo de mangue</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Gecarcinidae</td>
<td>Johngarthia weileri</td>
<td>Crack</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Grapsidae</td>
<td>Goniopsis pelli</td>
<td>Caranguejo preto</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Grapsidae</td>
<td>Grapsus adscensionis</td>
<td>Caranguejo de roca</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Ocypodidae</td>
<td>Afrua tangeri</td>
<td>Caranguejo violinista</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Ocypodidae</td>
<td>Ocypode africana</td>
<td>Caranguejo fantasma</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Paguridae</td>
<td>Paguroidea sp.</td>
<td>Eremita</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Palaemonidae</td>
<td>Palaemon sp.</td>
<td>Camaron de mangue</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Archatinidae</td>
<td>Archachatina marginata</td>
<td>Buzio do mato</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Cypraeidae</td>
<td>Zonaria zonaria</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Littorininae</td>
<td>Echinolittorina tuberculata</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Littorininae</td>
<td>Echinolittorina caboverdensis</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Muricidae</td>
<td>Tympanotonus fuscatus</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Neritidae</td>
<td>Clypeolum owenianum</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Neritidae</td>
<td>Nerita senegalensis</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>Ostreidae</td>
<td>Saccostrea cucullata</td>
<td>Ostra</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Solecurtidae</td>
<td>Tagelus adansonii</td>
<td>Ameijoa</td>
</tr>
</tbody>
</table>

Tabla 19: Listado de organismos de macrofauna bentónica censados en Praia Caixão.

Durante el estudio de macrofauna bentónica en las inmediaciones del río Banzú (uno de los más caudalosos de la isla de Príncipe), se han observado: 10 especies de crustáceos y 9 especies de moluscos. Las 9 especies de moluscos corresponden a 7 familias diferentes, siendo 7 especies de caracoles y 2 especies de bivalvos. Respecto a
los crustáceos, 10 han sido las especies identificadas pertenecientes a 7 familias, con 8 especies de cangrejos, y 2 especies de camarones.

La población local de São Joaquim acostumbra a pescar grandes cantidades de camarones que posteriormente vende en la ciudad de São António, por lo que es un recurso explotado a tener en cuenta.

3.3.5 Ictiofauna

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especie</th>
<th>Nombre común</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belonidae</td>
<td>Platybelone sp.</td>
<td>Agulha</td>
<td>J</td>
</tr>
<tr>
<td>Gerreidae</td>
<td>Eucinostomus melanopterus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gobiidae</td>
<td>Periophthalmus barbarus</td>
<td>Cucumba</td>
<td>J/A</td>
</tr>
<tr>
<td>Gobiidae</td>
<td></td>
<td>Xarroco sp. 1</td>
<td>J/A</td>
</tr>
<tr>
<td>Gobiidae</td>
<td></td>
<td>Xarroco sp. 2</td>
<td>J/A</td>
</tr>
<tr>
<td>Lutjanidae</td>
<td>Lutjanus sp. 1</td>
<td>Corvina</td>
<td>J</td>
</tr>
<tr>
<td>Lutjanidae</td>
<td>Lutjanus sp. 2</td>
<td>Corvina</td>
<td>J</td>
</tr>
<tr>
<td>Mugilidae</td>
<td>Liza dumerili</td>
<td>Tainha</td>
<td>J</td>
</tr>
<tr>
<td>Mugilidae</td>
<td>Liza grandisquamis</td>
<td>Tainha</td>
<td>J</td>
</tr>
<tr>
<td>Poeciliidae</td>
<td>Aplocheilichthys spilauchen</td>
<td>Tose-tose</td>
<td>J/A</td>
</tr>
<tr>
<td>Polynemidae</td>
<td>Galeoides decadactylus</td>
<td>Barbudo</td>
<td>J</td>
</tr>
</tbody>
</table>

Tabla 20: Listado de especies de peces censados en Praia Caixão. El término fase corresponde a la edad de los individuos, siendo J (juvenil) el estado de inmadurez sexual y A (adulto) individuos en edad de reproducción según sus gónadas.

En el manglar de Praia Caixão se han censado un total de 11 especies de peces, pertenecientes a 7 familias. De las 11 especies, 6 de ellas son especies de interés comercial para consumo humano.

Fig. 32: Vista panorámica desde Praia Caixão.
El barbudo (*Galeoides decadactylus*) se encuentra frecuentemente sobre fondos arenosos y fangosos de aguas poco profundas en hábitats salobres y estuarios, pero nunca en aguas dulces. Se alimenta de invertebrados bentónicos, y suelen ser comercializados; frescos, secos salados o ahumados.

En la parte alta del manglar, en el límite de influencia de las masas de agua salada, se encuentra una población amplia y estable de peces Tose-tose.

Durante el presente estudio, se ha visto un pequeño grupo de agulhas (*Platybelone sp.*) adentrarse en el manglar de Praia Caixão, no se sabe si para alimentarse o simplemente para refugiarse del acoso de otros predadores marinos.
4. PRESIONES ANTROPOGÉNICAS

La destrucción del ecosistema de manglar de la mano del hombre, viene dada por la necesidad de ocupar terrenos para el cultivo de especies comerciales y la obtención de madera y carbón. Durante muchos años la isla de Príncipe ha sido uno de los principales exportadores de productos derivados de la palma y el coco, junto a la introducción de especies alóctonas como árboles frutales y campos de cultivo. La costumbre de teñir las redes de pesca con las raíces del manglar, junto con la necesidad de obtención de madera y carbón para las comunidades locales han propiciado la tala indiscriminada de esta especie, reduciendo a su mínima expresión las cuencas de transición donde se asienta el mangle *Rizophora harrisoni*.

La construcción de carreteras y puentes (como en el caso de Praia Salgada y Praia Caixão) pueden impedir o dificultar el intercambio de masas de agua salada y dulce, alterando la dinámica de sedimentación y transformando el entorno. En el caso de Praia Salgada, el crecimiento descontrolado de *Cocos nucifera* por abandono de la explotación ha podido originar una alteración en el transporte de sedimentos, estabilizando y asentando una barrera de arena que ha dado lugar inicialmente a una laguna que posteriormente ha terminado cerrando la salida al mar por colmatación de material sedimentario.

Fig. 33: Reciclaje de botellas de plástico

Otra práctica realizada en las bocas de los ríos ha sido el uso de sulfato para recoger camarones, aunque ahora, según los lugareños, su biomasa ha disminuido notablemente por lo que esta práctica parece ser que se ha abandonado.

Otro factor que lleva a la transformación del hábitat es la introducción de especies exóticas. Las especies terrestres introducidas son probablemente el principal problema de conservación en estas islas tropicales y pueden desempeñar un papel crítico en el manejo de vegetación primaria (Dutton, 1994).
Las introducciones de mamíferos domésticos como ratas, gatos, perros y cerdos en las islas vienen asociadas al traslado o migración de personas, mientras que civetas y monos han sido introducidos a propósito en Príncipe. Los efectos negativos de estas introducciones pueden variar desde la interrupción de la reproducción de especies de aves endémicas hasta la reducción en las plántulas del bosque primario.

No es posible evaluar en este primer estudio los daños causados por las actividades agrícolas y la introducción de diversos mamíferos (domésticos y silvestres) e incluso de los gasterópodos terrestres, sobre la distribución y estructura autóctona de la vegetación, incluidos los manglares.

Una consecuencia evidente del incremento de intercambios comerciales con agentes externos, especialmente en la última década, es la mayor presencia de desechos y restos de diversos materiales plásticos: botellas vacías, envases de diverso tipo, envoltorios, etc. Todos estos plásticos abandonados en el medio natural tienen incidencia ambiental y paisajística, llegando muchos de ellos a observarse dentro de los propios manglares. Las campañas de sensibilización ciudadana desarrolladas desde la Reserva de Biosfera están contribuyendo a disminuir el impacto ecológico y visual de estos desechos plásticos.

Las costas de la isla de Príncipe, como todas las demás, se encuentran sometidas a procesos naturales de erosión y sedimentación por acción del viento y las mareas. Estos procesos se verán modificados en los próximos años por el cambio climático y el calentamiento global producido por la acción del hombre, produciendo un aumento en las temperaturas medias y en el nivel del mar, lo que aumentará el estrés de los manglares y haciéndolos más vulnerables.

Finalmente, una red de saneamiento deficitaria en las comunidades contribuye al vertido de aguas fecales y compuestos contaminantes, principalmente detergentes y fertilizantes, pudiendo modificar los parámetros físico-químicos del agua y dando lugar a un desequilibrio ecológico con la proliferación de fitoplacton (bacterias y microalgas tóxicas) causantes de enfermedades.
5. CONCLUSIONES

 Mediante la delimitación, cartografía e inventario de las especies vegetales principales de los manglares, se puede determinar qué zonas del manglar han sido alteradas mediante la acción del hombre y por tanto cuales pueden ser las zonas potencialmente recuperables, reforestables y preservables.

 Los manglares de la isla de Príncipe se caracterizan por estar compuestos únicamente por la especie de manglar Rizophora harrisoni, y a pesar de que la vegetación es visiblemente variada, con una elevada proporción de árboles cultivables, estos se componen mayoritariamente por especies no amenazadas y de amplia distribución mundial, principalmente Cocos nucifera y Elaeis guineensis. El Acrostichum aureum es un helecho (feto) muy asociado a las plantas de mangle, de tamaño considerable, que puede alcanzar los 3,5 m de altura. Son semi-acuáticos, ya que las plantas no toleran inmersiones prolongadas, pero cuyas raíces requieren una humedad constante. En particular, Acrostichum aureum tiene una alta tolerancia a la salinidad y es una especie típica de hábitats del manglar.

![Fig. 34: Panorámica de Praia Caixão en marea alta.](image-url)

 Los manglares estudiados se caracterizan por una elevada cobertura del dosel, con baja riqueza específica y volumen arbóreo significativo. Características que, junto con la vegetación espesa, el suelo pantanoso y la intrusión de agua salina, hacen difícil y poco interesante su explotación comercial.

 Actualmente, los manglares de la isla parecen ser restos de áreas más grandes. La población local de mayor edad comunica que antiguamente los manglares cubrían
mayor extensión, pero que la tala indiscriminada (para tinción de redes y obtención de combustible principalmente) y la deforestación para usos agrícolas los ha convertido en los actuales reductos.

Como resultado, los manglares tienden a ser poco visitados por la población, funcionando como refugios naturales para la fauna, con un gran potencial para ofrecer multitud de servicios turísticos medioambientales en terrenos que de otra forma serían difíciles de explotar.

El ciclo reproductivo de *Rizophora harrisoni* comienza en septiembre/octubre cuando comienzan a desarrollarse los brotes de flores que florecen a partir de abril. Los frutos comienzan a verse en diciembre, madurando en los meses de febrero/marzo. Los propágulos de los manglares a diferencia de otras plantas, no necesitan ser germinados, ya que están preparados para brotar y crecer. Desde que se separan de las ramas a partir de abril, están listas para echar raíces y crecer, siendo su mecanismo de dispersión el transporte acuático ya que flotan.

Respecto a las aves, mediante el muestreo metódico de avistamiento de aves en varios puntos del manglar, se puede determinar el número de especies que interactúan en el manglar en el tiempo, determinando que especies habitan permanentemente y que especies migratorias hacen uso de este hábitat de manera periódica.

El muestreo realizado durante 4 meses ha arrojado datos de 1.533 aves reportadas, de las que 1.103 (71,95 %) corresponden a especies endémicas. Un promedio de 26 especies, de ellas el 50 % endémicas, hacen pensar que un estudio más en profundidad durante todo el año, puede arrojar datos sobre la variabilidad estacional de las aves, aumentando el número de avistamientos y de especies que habitan o utilizan los manglares, como se puede deducir de algunas publicaciones (Jones y Tye, 2006; Leventis y Olmos, 2009).

El estudio e identificación de macroorganismos que habitan el manglar (especies permanentes y estacionales o temporales) de tres grupos principales (crustáceos, moluscos y peces), como indicadores de calidad medioambiental, aportan un valor añadido al manglar dada su importancia ecológica, económica y turística, y permiten diseñar las acciones futuras de conservación.

En cuanto a la macrofauna bentónica, la variabilidad de las condiciones ambientales entre la estación seca (Gravana) y la estación lluviosa, sugiere un alto nivel de estrés que condiciona el establecimiento de una comunidad de invertebrados bentónicos bien estructurada. Las diferencias tan grandes que se dan en parámetros como la salinidad, la turbidez o el oxígeno disuelto, convierten este tipo de hábitats en extremos, por lo que la colonización de estas zonas por parte de la flora y fauna viene
dada por unas pocas especies altamente adaptadas a estos entornos tan hostiles. Los muestreos se han realizado mayormente en la época de lluvia, por lo que los parámetros, y por tanto, los hábitats, presentan características de estratificación, que además se ven agravadas por la influencia de las mareas.

En total se han obtenido 58 registros diferentes de organismos pertenecientes a la macrofauna bentónica: 31 de ellos corresponden a crustáceos pertenecientes a 9 familias diferentes, con un resultado provisional de 14 especies. Los 27 registros resultantes corresponden a 14 especies de moluscos, pertenecientes a 10 familias.

La alta biodiversidad de organismos bentónicos en ambientes tan extremos y especializados, denota una buena conservación ecológica de los manglares, con una riqueza de macrofauna que conviene preservar y monitorizar para mantener el equilibrio ambiental de estos ecosistemas.

Respecto a la ictiofauna, hay que tener en cuenta que cuando ecosistemas tan complejos como los manglares gozan de buena salud, son varios los indicadores ecológicos que así lo acreditan. La diversidad de especies arbóreas o herbáceas, un gran número de aves e incluso la macrofauna son claros indicadores de ambientes maduros y en equilibrio. Por tanto, cabría esperar que el número de especies de peces también fuera en consonancia. Sin embargo, la época en la que se han llevado a cabo los muestreos de peces (época de lluvias) y los pocos medios con los que se ha contado, no han permitido un exhaustivo estudio en este apartado. Se han censado solamente 43 registros en total, con 21 especies pertenecientes a 12 familias: 13 especies en Praia Salgada, 11 especies en Praia Caixão y 10 especies en el entorno de Praia Grande. Un resultado bastante pobre teniendo en cuenta la gran biodiversidad de peces que habitan a escasos metros en las costas adyacentes.

De entre todas las especies destaca la cucumba (*Periophthalmus barbarus*) por ser un pez pulmonado casi exclusivo de los manglares, con un alto valor turístico y ecológico, ya que solo se encuentra en estos ambientes y es indicador de la buena salud de la que goza el manglar, debido a que esta especie es altamente sensible a alteraciones.
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)

medioambientales producidas por la actividad industrial del ser humano. Ocasionalemente se encuentra en ríos cercanos a manglares, pero siempre cerca de la orilla. Respirador anfibio que salta o camina sobre la arena o el barro en busca de comida, los adultos se alimentan principalmente de artrópodos (cangrejos, insectos, etc.) sobre la superficie del lodo. Vive y se reproduce en madrigueras horadadas en el fango.

En cuanto a las especies de interés comercial, habría que realizar campañas estacionales para monitorizar el ciclo de vida y su implicación en los manglares, con el objetivo de asegurar las tallas mínimas de madurez reproductiva para que el recurso sea sostenible y no llegar a la sobreexplotación del recurso pesquero.

Mediante el estudio físico-químico del agua en zonas de manglar, se pueden identificar zonas o masas de agua donde por sus características físico-químicas o parámetros, permiten llevar a cabo planes de rehabilitación o repoblación del manglar.

Los parámetros físico-químicos estudiados en los tres manglares han posibilitado el entendimiento de la composición del ecosistema mediante la conformación de hábitats dispares. La fuerte estratificación observada en las masas de agua permite entender la transición entre hábitats de bosque tropical y zonas costeras salobres, con un fuerte gradiente de especies vegetales y animales con características biológicas y ecológicas notablemente diferenciadas.

Cabe destacar que los tres manglares poseen características morfológicas a nivel geológico muy diferentes: el manglar de Praia Caixão se ubica en las orillas del Río Banzú (uno de los más caudalosos de la isla en época de lluvias), por lo que las masas de agua salada y dulce a menudo se encuentran mezcladas debido a un alto hidrodinamismo, dando lugar a una masa de agua homogénea con menor temperatura y salinidad, y mayor turbidez y oxígeno. Sin embargo, cuando cesan las lluvias, se produce una estratificación de las masas de agua y los parámetros como la salinidad y la concentración de oxígeno arrojan lógicamente valores más altos cuanto más cerca del mar se miden.

En el caso de Praia Salgada se reconoce la dinámica típica de los ecosistemas de manglar: la entrada de masa de agua salada en la zona de transición por acción de las mareas (bajo hidrodinamismo), y la evacuación de agua de lluvia por escorrentía mediante varios afluentes, permiten una marcada estratificación de las masas de agua y por tanto dan lugar a gradientes en los parámetros. En época de lluvias, cuando el flujo de agua dulce aumenta ostensiblemente, ocurre como en Praia Caixão; se produce una masa homogénea de agua con altos valores de turbidez y concentración de oxígeno, y una temperatura y salinidad menor de la esperada.
El manglar de Praia Grande se encuentra en una laguna cerrada, sin acceso al mar, por lo que la evacuación de agua dulce y la intrusión de agua salada parece ser mediante procesos de filtración, por lo que los parámetros como la salinidad y el oxígeno principalmente, siguen más un patrón topográfico que debido a procesos físico-químicos. En épocas de lluvia, el aumento del flujo de agua dulce de los afluentes arrastra, y posteriormente deposita, gran cantidad de materia orgánica y en suspensión. Ocasionalmente (3-4 veces al año) la laguna se rebosa y vierte parte de la masa de agua al mar. Con el tiempo y una climatología favorable, la orografía ayuda a la estratificación de la masa de agua de la laguna, formándose “bolsas” de agua salada (más densa) en las zonas más profundas.

En resumen, une vez analizadas todas las variables y manejando los manglares como el conjunto de especies vegetales y animales que forman el ecosistema, destaca de entre los tres el manglar de Praia Salgada como: el más completo, el más característico, el que mayor riqueza aporta, y el menos degradado, por tanto es el que tiene mayor necesidad de preservarse y/o explotarse de manera sostenible. En definitiva, estas dos son las actividades principales a acometer en el manglar: por un lado la preservación del hábitat ecológico, y por otro lado la explotación turística sustentable del mismo.

Fig. 36. Hongos y diversos ejemplares de helechos epífitos.

El ecoturismo ha demostrado que ofrece una triple utilidad socio-económica para los territorios. Por un lado, fomenta la educación y apreciación social de la diversidad biocultural y natural entre los habitantes. Por otro, la reanimación económica de estos territorios en base a una diversificación de la oferta basada en su identidad territorial. Por último, su capacidad para coadyuvar la generación de empleos e ingresos para las poblaciones que habitan en el zonas de reservas naturales (Pinkus-Rendón et al., 2015).

Diversos estudios confirman que una vez establecidos los servicios ecoturísticos, las personas empleadas en esta actividad tienen la tendencia a adquirir conciencia sobre la importancia de la conservación de los recursos naturales y, por ende, sobre la
preservación del patrimonio natural, lo que favorece la sostenibilidad en la reserva y el desarrollo comunitario (Pinkus-Rendón et al., 2015). Así, esta modalidad permite revertir altos costos sociales y ecológicos que tradicionalmente se le han atribuido a la actividad turística (Bringas, 1997). El ecoturismo, a diferencia del turismo tradicional, requiere de poca inversión en infraestructura y de una alta inversión en capacitación, información y organización. Pero para que el ecoturismo sea una estrategia efectiva de conservación, quienes planean su explotación y el uso del suelo deben encontrar en él una motivación suficiente, basada en el conocimiento y la información.

Finalmente el ecoturismo ha de verse como herramienta para la conservación del patrimonio natural, sin perder de vista su principal motivación, la educación ambiental. Un correcto desarrollo del ecoturismo generalmente contribuye a la mejora de las zonas protegidas (Rábago y Revah, 2014), emergiendo como una oportunidad para conciliar la ecología con la economía. De esta manera se puede considerar el ecoturismo como el ejemplo más cercano de lo que se denomina desarrollo turístico sustentable (Marajh, 1992).
6. BIBLIOGRAFÍA

Proyecto elaborado para la Reserva da Biosfera Ilha do Príncipe y financiado parcialmente por la Fundaçao Principe Trust (2016).

Coordinación General
José Cassandra

Dirección Técnica
António Domingos Abreu
Ricardo Haroun Tabraue

Autores
António Domingos Abreu
Ricardo Haroun Tabraue
Aketza Herrero Barrencua
Yodiney dos Santos

Colaboración
María do Ceu Madureira
Ico Martinez
Estrela Matilde
Fernando Tuya

Fotografía
António Domingos Abreu
Ricardo Haroun Tabraue
Aketza Herrero Barrencua
Estrela Matilde
Yodiney dos Santos

Foto de portada: Rui Camilo
Caracterización preliminar de los manglares de la Isla de Príncipe (São Tomé e Príncipe)